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Preface

This book covers the aspects of linear algebra that are included in most ad-
vanced undergraduate texts. All the usual topics from complex vectors spaces,
complex inner products, The Spectral theorem for normal operators, dual spaces,
quotient spaces, the minimal polynomial, the Jordan canonical form, and the ratio-
nal canonical form are explained. A chapter on determinants has been included as
the last chapter, but they are not used in the text as a whole. A di¤erent approach
to linear algebra that doesn�t use determinants can be found in [Axler].

The expected prerequisites for this book would be a lower division course in
matrix algebra. A good reference is for this material is [Bretscher].

In the context of other books on linear algebra it is my feeling that this text
is about on par in di¢ culty with books such as [Axler], [Curtis], [Halmos],
[Ho¤man-Kunze], and [Lang]. If you want to consider more challenging texts
I�d suggest looking at the graduate levels books [Greub], [Roman], and [Serre].

Chapter 1 contains all of the basic material on abstract vectors spaces and
linear maps. The dimension formula for linear maps is the theoretical highlight. To
facilitate some more concrete developments we cover matrix representations, change
of basis, and Gauss elimination. Linear indepence which is usually introduced much
earlier in linear algebra only comes towards to end of the chapter. But it is covered
in great detail there. We have also included two sections on dual spaces and quotient
spaces that can be skipped.

Chapter 2 is concerned with the theory of linear operators. Linear di¤erential
equations are used to motivate the introduction of eigenvalues and eigenvectors,
but this motivation can be skipped. We then explain how Gauss elimination can
be used to compute the eigenvalues as well as the eigenvectors of a matrix. This
is used to understand the basics of how and when a linear operator on a �nite
dimensional space is diagonalizable. We also introduce the minimal polynomial
and use it to give the classic characterization of diagonalizable operators. In the
latter sections we give a fairly simple proof of the Cayley-Hamilton theorem and
the cyclic subspace decomposition. This quickly leads to the Frobenius canonical
from. This canonical from is our most general result on how to �nd a simple
matrix representation for a linear map in case it isn�t diagonalizable. The last
section explains how the Frobenius canonical form implies the Jordan-Chevalley
decomposition and the Jordan-Weierstrass canonical form.

Chapter 3 includes material on inner product spaces. The Cauchy-Schwarz
inequality and its generalization to Bessel�s inequality and how they tie in with
orthogonal projections form the theoretical center piece of this chapter. Along the
way we cover standard facts about orthonormal bases and their existence through
the Gram-Schmidt procedure as well as orthogonal complements and orthogonal
projections. The chapter also contains the basic elements of adjoints of linear maps
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vi PREFACE

and some of its uses to orthogonal projects as this ties in nicely with orthonormal
bases. We end the chapter with a treatment of matrix exponentials and systems of
di¤erential equations.

Chapter 4 covers quite a bit of ground on the theory of linear maps between
inner product spaces. The most important result is of course The Spectral Theorem
for self-adjoint operators. This theorem is used to establish the canonical forms
for real and complex normal operators, which then gives the canonical form for
unitary, orthogonal and skew-adjoint operators. It should be pointed out that the
proof of the Spectral theoem does not depend on whether we use real or complex
scalars nor does it rely on the characteristic or minimal polynomials. The reason
for ignoring our earlier material on diagonalizability is that it is desirable to have
a theory that more easily generalizes to in�nite dimensions. The usual proofs
that use the characteristic and minimal polynomials are relegated to the exercises.
The last sections of the chapter cover the singular value decomposition, the polar
decomposition, triangulability of complex linear operators, and quadratic forms and
their uses in multivariable calculus.

Chapter 5 covers determinants. At this point it might seem almost useless to
introduce the determinant as we have covered the theory without needing it much.
While not indispensable, the determinant is rather useful in giving a clean de�nition
for the characteristic polynomial. It is also one of the most important invariants of
a �nite dimensional operator. It has several nice properties and gives an excellent
criterion for when an operator is invertible. It also comes in handy in giving a
formula (Cramer�s rule) for solutions to linear systems. Finally we discuss its uses
in the theory of linear di¤erential equations, in particular in connection with the
variation of constants formula for the solution to inhomogeneous equations. We
have taken the liberty of de�ning the determinant of a linear operator through the
use of volume forms. Aside from showing that volume forms exist this gives a rather
nice way of proving all the properties of determinants without using permutations.
It also has the added bene�t of automatically giving the permutation formula for
the determinant and hence showing that the sign of a permutation is well-de�ned.

An � after a section heading means that the section is not necessary for the
understanding of other sections without an �: We refer to sections in the text by
writing out the title in citation marks, e.g., �Dimension and Isomorphism�and if
needed we also mention the chapter where the section is located.

Now for how to teach a course using this book. My assumption is that most
courses are based on 150 minutes of instruction per week with a problem session or
two added . I realize that some courses meet three times while others only two so
I won�t suggest how much can be covered in a lecture.

First let us suppose that you, like me, teach in the pedagogically impoverished
quarter system: It should be possible to teach Chapter 1, sections 2-13 in 5 weeks,
being a bit careful about what exactly is covered in sections 12 and 13. Then
spend two weeks on Chapter 2, sections 3-5, possibly omitting section 4 covering
the minimal polynomial if timing looks tight. Next spend two weeks on Chapter
3 sections 1-5, and �nish the course by covering Chapter 4, section 1 as well as
exercise 9 in 4.1. This �nishes the course with a proof of the Spectral Theorem
for self-adjoint operators, although not the proof I�d recommend for a more serious
treatment.
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Next let us suppose that you teach in a short semester system, as the ones at
various private colleges and universities. You could then add two weeks of material
by either covering the canonical forms from Chapter 2, sections 6-8 or alternately
spend two weeks covering some of the theory of linear operators on inner product
spaces from Chapter 4, sections 1-5. In case you have 15 weeks at you disposal it
might be possible to cover both of these topics rather than choosing between them.

Finally, should you have two quarters, like we sometimes do here at UCLA, then
you can in all likelihood cover virtually the entire text. I�d certainly recommend
that you cover all of Chapter 4 and the canonical form sections in Chapter 2,
sections 6-8, as well as the chapter on determinants. If time permits it might even
be possible to include the sections that cover di¤erential equations: 2.2, 3.7, last
part of 4.8, and 5.8.

This book has been used to teach a bridge course on Linear Algebra at UCLA
as well as a regular quarter length course. The bridge course was funded by a
VIGRE NSF-grant and its purpose was to ensure that incoming graduate students
had really learned all of the linear algebra that we expect them to know when
starting graduate school. The author would like to thank several UCLA students for
suggesting various improvements to the text: Jeremy Brandman, Sam Chamberlain,
Timothy Eller, Clark Grubb, Vanessa Idiarte, Yanina Landa, Bryant Mathews,
Shervin Mosadeghi, and Danielle O�Donnol.





CHAPTER 1

Basic Theory

In the �rst chapter we are going to cover the de�nitions of vector spaces, linear
maps, and subspaces. In addition we are introducing several important concepts
such as basis, dimension, direct sum, matrix representations of linear maps, and
kernel and image for linear maps. We shall prove the dimension theorem for lin-
ear maps that relates the dimension of the domain to the dimensions of kernel
and image. We give an account of Gauss elimination and how it ties in with the
more abstract theory. This will be used to de�ne and compute the characteristic
polynomial in chapter 2.

It is important to note that the sections �Row Reduction�and �Linear Inde-
pendence�contain alternate proofs of some of the important results in this chapter.
As such, some people might want to go right to these sections after the discussion
on isomorphism in �Dimension and Isomorphism�and then look back at the missed
sections.

As induction is going to play a big role in many of the proofs we have chosen
to say a few things about that topic in the �rst section.

1. Induction and Well-ordering�

A fundamental property of the natural numbers, i.e., the positive integers N =
f1; 2; 3; :::g, that will be used throughout the book is the fact that they are well-
ordered. This means that any non-empty subset S � N has a smallest element
smin 2 S such that smin � s for all s 2 S: Using the natural ordering of the
integers, rational numbers, or real numbers we see that this property does not hold
for those numbers. For example, the half-open interval (0;1) does not have a
smallest element.

In order to justify that the positive integers are well-ordered let S � N be
non-empty and select k 2 S: Starting with 1 we can check whether it belongs to
S: If it does, then smin = 1: Otherwise check whether 2 belongs to S: If 2 2 S and
1 =2 S; then we have smin = 2: Otherwise we proceed to check whether 3 belongs
to S: Continuing in this manner we must eventually �nd k0 � k; such that k0 2 S;
but 1; 2; 3; :::; k0 � 1 =2 S: This is the desired minimum: smin = k0:

We shall use the well-ordering of the natural numbers in several places in this
text. A very interesting application is to the proof of The Prime Factorization
Theorem: Any integer � 2 is a product of prime numbers. The proof works the
following way. Let S � N be the set of numbers which do not admit a prime
factorization. If S is empty we are �nished, otherwise S contains a smallest element
n = smin 2 S: If n has no divisors, then it is a prime number and hence has a prime
factorization. Thus n must have a divisor p > 1: Now write n = p � q: Since p; q < n
both numbers must have a prime factorization. But then also n = p � q has a prime
factorization. This contradicts that S is nonempty.

1



2 1. BASIC THEORY

The second important idea that is tied to the natural numbers is that of in-
duction. Sometimes it is also called mathematical induction so as not to confuse it
with the inductive method from science. The types of results that one can attempt
to prove with induction always have a statement that needs to be veri�ed for each
number n 2 N: Some good examples are

(1) 1 + 2 + 3 + � � �+ n = n(n+1)
2 :

(2) Every integer � 2 has a prime factorization.
(3) Every polynomial has a root.
The �rst statement is pretty straight forward to understand. The second is a

bit more complicated and we also note that in fact there is only a statement for
each integer � 2: This could be �nessed by saying that each integer n + 1; n � 1
has a prime factorization. This, however, seems too pedantic and also introduces
extra and irrelevant baggage by using addition. The third statement is obviously
quite di¤erent from the other two. For one thing it only stands a chance of being
true if we also assume that the polynomials have degree � 1: This gives us the idea
of how this can be tied to the positive integers. The statement can be paraphrased
as: Every polynomial of degree � 1 has a root. Even then we need to be more
precise as x2 + 1 does not have any real roots.

In order to explain how induction works abstractly suppose that we have a
statement P (n) for each n 2 N: Each of the above statements can be used as an
example of what P (n) can be. The induction process now works by �rst insuring
that the anchor statement is valid. In other words, we �rst check that P (1) is
true. We then have to establish the induction step. This means that we need to
show: If P (n� 1) is true, then P (n) is also true. The assumption that P (n� 1)
is true is called the induction hypothesis. If we can establish the validity of these
two facts then P (n) must be true for all n: This follows from the well-ordering of
the natural numbers. Namely, let S = fn : P (n) is falseg : If S is empty we are
�nished, otherwise S has a smallest element k 2 S: Since 1 =2 S we know that
k > 1: But this means that we know that P (k � 1) is true. The induction step
then implies that P (k) is true as well. This contradicts that S is non-empty.

Let us see if can use this procedure on the above statements. For 1. we begin
by checking that 1 = 1(1+1)

2 : This is indeed true. Next we assume that

1 + 2 + 3 + � � �+ (n� 1) = (n� 1)n
2

and we wish to show that

1 + 2 + 3 + � � �+ n = n (n+ 1)

2
:

Using the induction hypothesis we see that

(1 + 2 + 3 + � � �+ (n� 1)) + n =
(n� 1)n

2
+ n

=
(n� 1)n+ 2n

2

=
(n+ 1)n

2
:

Thus we have shown that P (n) is true provided P (n� 1) is true.
For 2. we note that 2 is a prime number and hence has a prime factorization.

Next we have to prove that n has a prime factorization if (n� 1) does. This,
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however, does not look like a very promising thing to show. In fact we need a
stronger form of induction to get this to work.

The induction step in the stronger version of induction is: If P (k) is true for
all k < n; then P (n) is also true. Thus the induction hypothesis is much stronger
as we assume that all statements prior to P (n) are true. The proof that this form
of induction works is virtually identical to the above justi�cation.

Let us see how this stronger version can be used to establish the induction step
for 2. Let n 2 N; and assume that all integers below n have a prime factorization. If
n has no divisors other than 1 and n it must be a prime number and we are �nished.
Otherwise n = p � q where p; q < n: Whence both p and q have prime factorizations
by our induction hypothesis. This shows that also n has a prime factorization.

We already know that there is trouble with statement 3. Nevertheless it is
interesting to see how an induction proof might break down. First we note that all
polynomials of degree 1 look like ax+ b and hence have � b

a as a root. This anchors
the induction. To show that all polynomials of degree n have a root we need to
�rst decide which of the two induction hypotheses are needed. There really isn�t
anything wrong by simply assuming that all polynomials of degree < n have a root.
In this way we see that at least any polynomial of degree n that is the product of
two polynomials of degree < n must have a root. This leaves us with the so-called
prime or irreducible polynomials of degree n, namely, those polynomials that are
not divisible by polynomials of degree � 1 and < n: Unfortunately there isn�t much
we can say about these polynomials. So induction doesn�t seem to work well in
this case. All is not lost however. A careful inspection of the �proof�of 3. can be
modi�ed to show that any polynomial has a prime factorization. This is studied
further in the section �Polynomials�in chapter 2.

The type of statement and induction argument that we will encounter most
often in this text is de�nitely of the third type. That is to say, it certainly will
never be of the very basic type seen in statement 1. Nor will it be as easy as in
statement 2. In our cases it will be necessary to �rst �nd the integer that is used for
the induction and even then there will be a whole collection of statements associated
with that integer. This is what is happening in the 3rd statement. There we �rst
need to select the degree as our induction integer. Next there are still in�nitely
many polynomials to consider when the degree is �xed. Finally whether or not
induction will work or is the �best�way of approaching the problem might actually
be questionable.

The following statement is fairly typical of what we shall see: Every subspace
of Rn admits a basis with � n elements. The induction integer is the dimension n
and for each such integer there are in�nitely many subspaces to be checked. In this
case an induction proof will work, but it is also possible to prove the result without
using induction.

2. Elementary Linear Algebra

Our �rst picture of what vectors are and what we can do with them comes from
viewing them as geometric objects in the plane. Simply put, a vector is an arrow of
some given length drawn in the plane. Such an arrow is also known as an oriented
line segment. We agree that vectors that have the same length and orientation are
equivalent no matter where they are based. Therefore, if we base them at the origin,
then vectors are determined by their endpoints. Using a parallelogram we can add
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such vectors. We can also multiply them by scalars. If the scalar is negative we
are changing the orientation. The size of the scalar determines how much we are
scaling the vector, i.e., how much we are changing its length.

This geometric picture can also be taken to higher dimensions. The idea of
scaling a vector doesn�t change if it lies in space, nor does the idea of how to add
vectors, as two vectors must lie either on a line or more generically in a plane. The
problem comes when we wish to investigate these algebraic properties further. As
an example think about the associative law

(x+ y) + z = x+ (y + z) :

Clearly the proof of this identity changes geometrically from the plane to space. In
fact, if the three vectors do not lie in a plane and therefore span a parallelepiped
then the sum of these three vectors regardless of the order in which they are added
is the diagonal of this parallelepiped. The picture of what happens when the vectors
lie in a plane is simply a projection of the three dimensional picture on to the plane.
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The purpose of linear algebra is to clarify these algebraic issues by looking at
vectors in a less geometric fashion. This has the added bene�t of also allowing
other spaces that do not have geometric origins to be included in our discussion.
The end result is a somewhat more abstract and less geometric theory, but it has
turned out to be truly useful and foundational in almost all areas of mathematics,
including geometry, not to mention the physical, natural and social sciences.

Something quite di¤erent and interesting happens when we allow for complex
scalars. This is seen in the plane itself which we can interpret as the set of complex
numbers. Vectors still have the same geometric meaning but we can also �scale�
them by a number like i =

p
�1: The geometric picture of what happens when

multiplying by i is that the vector�s length is unchanged as jij = 1; but it is rotated
90�: Thus it isn�t scaled in the usual sense of the word. However, when we de�ne
these notions below one will not really see any algebraic di¤erence in what is hap-
pening. It is worth pointing out that using complex scalars is not just something
one does for the fun of it, it has turned out to be quite convenient and important to
allow for this extra level of abstraction. This is true not just within mathematics
itself as can be seen when looking at books on quantum mechanics. There complex
vector spaces are the �sine qua non�(without which nothing) of the subject.

3. Fields

The �scalars� or numbers used in linear algebra all lie in a �eld. A �eld is
simply a collection of numbers where one has both addition and multiplication.
Both operations are associative, commutative etc. We shall mainly be concerned
with R and C; some examples using Q might be used as well. These three �elds
satisfy the axioms we list below.

A �eld F is a set whose elements are called numbers or when used in linear
algebra scalars. The �eld contains two di¤erent elements 0 and 1 and we can add
and multiply numbers. These operations satisfy

(1) The Associative Law:

�+ (� + 
) = (�+ �) + 
:

(2) The Commutative Law:

�+ � = � + �:

(3) Addition by 0:
�+ 0 = �:

(4) Existence of Negative Numbers: For each � we can �nd �� so that
�+ (��) = 0:

(5) The Associative Law:

� (�
) = (��) 
:

(6) The Commutative Law:

�� = ��:

(7) Multiplication by 1:
�1 = �:

(8) Existence of Inverses: For each � 6= 0 we can �nd ��1 so that
���1 = 1:
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(9) The Distributive Law:

� (� + 
) = �� + �
:

Occasionally we shall also use that the �eld has characteristic zero, this means
that

n =

n timesz }| {
1 + � � �+ 1 6= 0

for all positive integers n: Fields such as F2 = f0; 1g where 1 + 1 = 0 clearly do
not have characteristic zero. We make the assumption throughout the text that all
�elds have characteristic zero. In fact, there is little loss of generality in assuming
that the �elds we work are the usual number �elds Q, R, and C.

There are several important collections of numbers that are not �elds:

N = f1; 2; 3; ::::g
� N0 = f0; 1; 2; 3; :::g
� Z = f0;�1;�2;�3; :::g
= f0; 1;�1; 2;�2; 3;�3; :::g :

4. Vector Spaces

A vector space consists of a set of vectors V and a �eld F. The vectors can
be added to yield another vector: if x; y 2 V; then x + y 2 V . The scalars can
be multiplied with the vectors to yield a new vector: if � 2 F and x 2 V; then
�x = x� 2 V . The vector space contains a zero vector 0; also known as the origin
of V . It is a bit confusing that we use the same symbol for 0 2 V and 0 2 F.
It should ways be obvious from the context which zero is used. We shall use the
notation that scalars, i.e., elements of F are denoted by small Greek letters such
as �; �; 
; :::, while vectors are denoted by small roman letters such as x; y; z; :::.
Addition and scalar multiplication must satisfy the following axioms.

(1) The Associative Law:

(x+ y) + z = x+ (y + z) :

(2) The Commutative Law:

x+ y = y + x:

(3) Addition by 0:
x+ 0 = x:

(4) Existence of Negative vectors: For each x we can �nd �x such that

x+ (�x) = 0:

(5) The Associative Law for multiplication by scalars:

� (�x) = (��)x:

(6) The Commutative Law for multiplying by scalars:

�x = x�:

(7) Multiplication by the unit scalar:

1x = x:



4. VECTOR SPACES 7

(8) The Distributive Law when vectors are added:

� (x+ y) = �x+ �y:

(9) The Distributive Law when scalars are added:

(�+ �)x = �x+ �x:

The only rule that one might not �nd elsewhere is �x = x�: In fact we could just
declare that one is only allowed to multiply by scalars on the left. This, however,
is an inconvenient restriction and certainly one that doesn�t make sense for many
of the concrete vector spaces we will work with. We shall also often write x � y
instead of x+ (�y) :

These axioms lead to several �obvious�facts.

Proposition 1. (1) 0x = 0:
(2) �0 = 0:
(3) �1x = �x:
(4) If �x = 0; then either � = 0 or x = 0:

Proof. By the distributive law

0x+ 0x = (0 + 0)x = 0x:

This together with the assocoative law gives us

0x = 0x+ (0x� 0x)
= (0x+ 0x)� 0x
= 0x� 0x
= 0:

The second identity is proved in the same manner.
For the third consider:

0 = 0x

= (1� 1)x
= 1x+ (�1)x
= x+ (�1)x;

adding �x on both sides then yields

�x = (�1)x:

Finally if �x = 0 and � 6= 0; then we have

x =
�
��1�

�
x

= ��1 (�x)

= ��10

= 0:

�

With these matters behind us we can relax a bit and start adding, subtract-
ing, and multiplying along the lines we are used to from matrix algebra. Our
�rst construction is to form linear combinations of vectors. If �1; :::; �m 2 F and
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x1; :::; xm 2 V; then we can multiply each xi by the scalar �i and then add up the
resulting vectors to form the linear combination

x = �1x1 + � � �+ �mxm:
We also say that x is a linear combination of the xis.

If we arrange the vectors in a 1�m row matrix�
x1 � � � xm

�
and the scalars in a column m � 1 matrix we see that the linear combination can
be thought of as a matrix product

mX
i=1

�ixi = �1x1 + � � �+ �mxm =
�
x1 � � � xm

� 264 �1
...
�m

375 :
To be completely rigorous we should write the linear combination as a 1�1 matrix
[�1x1 + � � �+ �mxm] but it seems too pedantic to insist on this. Another curiosity
here is that matrix multiplication almost forces us to write

x1�1 + � � �+ xm�m =
�
x1 � � � xm

� 264 �1
...
�m

375 :
This is one reason why we want to be able to multiply by scalars on both the left
and right.

Here are some important examples of vectors spaces.

Example 1. The most important basic example is undoubtedly the Cartesian
n-fold product of the �eld F.

Fn =

8><>:
264 �1

...
�n

375 : �1; : : : ; �n 2 F
9>=>;

= f(�1; : : : ; �n) : �1; : : : ; �n 2 Fg :
Note that the n � 1 and the n-tuple ways of writing these vectors are equiva-

lent. When writing vectors in a line of text the n-tuple version is obviously more
convenient. The column matrix version, however, conforms to various other natural
choices, as we shall see, and carries some extra meaning for that reason. The ith

entry �i in the vector x = (�1; : : : ; �n) is called the ith coordinate of x:

Example 2. The space of functions whose domain is some �xed set S and
whose values all lie in the �eld F is denoted by Func (S;F) = ff : S ! Fg :

In the special case where S = f1; : : : ; ng it is worthwhile noting that
Func (f1; : : : ; ng ;F) = Fn:

Thus vectors in Fn can also be thought of as functions and can be graphed as either
an arrow in space or as a histogram type function. The former is of course more
geometric, but the latter certainly also has its advantages as collections of num-
bers in the form of n � 1 matrices don�t always look like vectors. In statistics the
histogram picture is obviously far more useful. The point here is that the way in
which vectors are pictured might be psychologically important, but from an abstract
mathematical perspective there is no di¤erence.
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There is a slightly more abstract vector space that we can construct out of a
general set S and a vector space V: This is the set Map (S; V ) of all maps from S
to V: Scalar multiplication and addition are de�ned as follows

(�f) (x) = �f (x) ;

(f1 + f2) (x) = f1 (x) + f2 (x) :

The space of functions is in some sense the most general type of vector space as
all other vectors spaces are either of this type or subspaces of such function spaces.
A subspace M � V of a vector space is a subset that contains the origin and is
closed under both scalar multiplication and vector addition: if � 2 F and x; y 2M;
then

�x 2 M;

x+ y 2 M:

Clearly subspaces of vector spaces are also vector spaces in their own right.

Example 3. The space of n�m matrices

Matn�m (F) =

8><>:
264 �11 � � � �1m

...
. . .

...
�n1 � � � �nm

375 : �ij 2 F
9>=>;

= f(�ij) : �ij 2 Fg :
n�m matrices are evidently just a di¤erent way of arranging vectors in Fn�m:

This arrangement, as with the column version of vectors in Fn; imbues these vectors
with some extra meaning that will become evident as we proceed.

Example 4. The set of polynomials whose coe¢ cients lie in the �eld F
F [t] =

�
p (t) = a0 + a1t+ � � �+ aktk : k 2 N0; a0; a1; :::; ak 2 F

	
is also a vector space. If we think of polynomials as functions, then we imagine them
as a subspace of Func fF;Fg . However the fact that a polynomial is determined
by its representation as a function depends on the fact that we have a �eld of
characteristic zero! If, for instance, F = f0; 1g ; then the polynomial t2+ t vanishes
when evaluated at both 0 and 1: Thus this nontrivial polynomial is, when viewed as
a function, the same as p (t) = 0:

We could also just record the coe¢ cients. In that case F [t] is a subspace of
Func (N0;F) and consists of those in�nite tuples that are zero except at all but a
�nite number of places.

If
p (t) = a0 + a1t+ � � �+ antn 2 F [t] ;

then the largest integer k � n such that ak 6= 0 is called the degree of p: In other
words

p (t) = a0 + a1t+ � � �+ aktk

and ak 6= 0: We use the notation deg (p) = k:

Example 5. The collection of formal power series

F [[t]] =
�
a0 + a1t+ � � �+ aktk + � � � : a0; a1; :::; ak; ::: 2 F

	
=

( 1X
i=0

ait
i : ai 2 F; i 2 N0

)
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bears some resemblance to polynomials, but without further discussions on conver-
gence or even whether this makes sense we cannot interpret power series as lying
in Func (F;F) : If, however, we only think about recording the coe¢ cients, then we
see that F [[t]] = Func (N0;F) : The extra piece of information that both F [t] and
F [[t]] carry with them, aside from being vector spaces, is that the elements can also
be multiplied. This extra structure will be used in the case of F [t] : Powerseries will
not play an important role in the sequel. Finally note that F [t] is a subspace of
F [[t]] :

Example 6. For two (or more) vector spaces V;W we can form the (Cartesian)
product

V �W = f(v; w) : v 2 V and w 2Wg :
Scalar multiplication and addition is de�ned by

� (v; w) = (�v; �w) ;

(v1; w1) + (v2; w2) = (v1 + v2; w1 + w2) :

Note that V �W is not in a natural way a subspace in a space of functions or maps.

4.1. Exercises.

(1) Find a subset C � F2 that is closed under scalar multiplication but not
under addition of vectors.

(2) Find a subset A � C2 that is closed under vector addition but not under
multiplication by complex numbers.

(3) Find a subset Q � R that is closed under addition but not scalar multi-
plication.

(4) Let V = Z be the set of integers with the usual addition as �vector
addition�. Show that it is not possible to de�ne scalar multiplication by
Q;R; or C so as to make it into a vector space.

(5) Let V be a real vector space, i.e., a vector space were the scalars are R.
The complexi�cation of V is de�ned as VC = V �V: As in the construction
of complex numbers we agree to write (v; w) 2 VC as v+iw: De�ne complex
scalar multiplication on VC and show that it becomes a complex vector
space.

(6) Let V be a complex vector space i.e., a vector space were the scalars are
C. De�ne V � as the complex vector space whose additive structure is that
of V but where complex scalar multiplication is given by ��x = ��x: Show
that V � is a complex vector space.

(7) Let Pn be the space of polynomials in F [t] of degree � n:
(a) Show that Pn is a vector space.
(b) Show that the space of polynomials of degree n is Pn � Pn�1 and

does not form a subspace.
(c) If f (t) : F! F; show that V = fp (t) f (t) : p 2 Png is a subspace of

Func fF;Fg.
(8) Let V = C� = C�f0g. De�ne addition on V by x�y = xy: De�ne scalar

multiplication by �� x = e�x
(a) Show that if we use 0V = 1 and �x = x�1; then the �rst four axioms

for a vector space are satis�ed.
(b) Which of the scalar multiplication properties do not hold?
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5. Bases

We are now going to introduce one of the most important concepts in linear
algebra. Let V be a vector space over F: A �nite basis for V is a �nite collection
of vectors x1; :::; xn 2 V such that each element x 2 V can be written as a linear
combination

x = �1x1 + � � �+ �nxn

in precisely one way. This means that for each x 2 V we can �nd �1; :::; �n 2 F
such that

x = �1x1 + � � �+ �nxn:

Moreover, if we have two linear combinations both yielding x

�1x1 + � � �+ �nxn = x = �1x1 + � � �+ �nxn;

then

�1 = �1; :::; �n = �n:

Since each x has a unique linear combination we also refer to it as the expansion
of x with respect to the basis. In this way we get a well-de�ned correspondence
V  ! Fn by identifying

x = �1x1 + � � �+ �nxn

with the n-tuple (�1; :::; �n) : We note that this correspondence preserves scalar
multiplication and vector addition since

�x = � (�1x1 + � � �+ �nxn)
= (��1)x1 + � � �+ (��n)xn;

x+ y = (�1x1 + � � �+ �nxn) + (�1x1 + � � �+ �nxn)
= (�1 + �1)x1 + � � �+ (�n + �n)xn:

This means that the choice of basis makes V equivalent to the more concrete vector
space Fn: This idea of making abstract vector spaces more concrete by the use
of a basis is developed further in �Linear maps as Matrices�and �Dimension and
Isomorphism�.

We shall later prove that the number of vectors in such a basis for V is always
the same. This allows us to de�ne the dimension of V over F to be the number of
elements in a basis. Note that the uniqueness condition for the linear combinations
guarantees that none of the vectors in a basis can be the zero vector.

Let us consider some basic examples.

Example 7. In Fn de�ne the vectors

e1 =

26664
1
0
...
0

37775 ; e2 =
26664
0
1
...
0

37775 ; :::; en =
26664
0
0
...
1

37775 :
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Thus ei is the vector that is zero in every entry except the ith where it is 1: These
vectors evidently form a basis for Fn since any vector in Fn has the unique expansion

Fn 3 x =

26664
�1
�2
...
�n

37775

= �1

26664
1
0
...
0

37775+ �2
26664
0
1
...
0

37775+ � � �+ �n
26664
0
0
...
1

37775
= �1e1 + �2e2 + � � �+ �nen

=
�
e1 e2 � � � en

�
26664
�1
�2
...
�n

37775 :
Example 8. In F2 consider

x1 =

�
1
0

�
; x2 =

�
1
1

�
:

These two vectors also form a basis for F2 since we can write�
�
�

�
= (�� �)

�
1
0

�
+ �

�
1
1

�
=

�
1 1
0 1

� �
(�� �)

�

�
To see that these choices are unique observe that the coe¢ cient on x2 must be �
and this then uniquely determines the coe¢ cient in front of x1:

Example 9. In F2 consider the slightly more complicated set of vectors

x1 =

�
1
�1

�
; x2 =

�
1
1

�
:

This time we see �
�
�

�
=

�� �
2

�
1
�1

�
+
�+ �

2

�
1
1

�
=

�
1 1
�1 1

� �
���
2

�+�
2

�
:

Again we can see that the coe¢ cients are unique by observing that the system


 + � = �;

�
 + � = �

has a unique solution. This is because 
, respectively �; can be found by subtracting,
respectively adding, these two equations.

Example 10. Likewise the space of matrices Matn�m (F) has a natural basis
Eij of nm elements, where Eij is the matrix that is zero in every entry except the
(i; j)

th where it is 1.
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If V = f0g ; then we say that V has dimension 0. Another slightly more
interesting case that we can cover now is that of one dimensional spaces.

Lemma 1. Let V be a vector space over F: If V has a basis with one element,
then any other �nite basis also has one element.

Proof. Let x1 be a basis for V . If x 2 V; then x = �x1 for some �: Now
suppose that we have z1; :::; zn 2 V; then zi = �ix1: If z1; :::; zn forms a basis, then
none of the vectors are zero and consequently �i 6= 0: Thus for each i we have
x1 = ��1i zi: Therefore, if n > 1; then we have that x1 can be written in more than
one way as a linear combination of z1; :::; zn: This contradicts the de�nition of a
basis. Whence n = 1 as desired. �

The concept of a basis depends quite a lot on the scalars we use. The �eld of
complex numbers C is clearly a one dimensional vector space when we use C as
the scalar �eld. To be speci�c we have that x1 = 1 is a basis for C: If, however,
we view C as a vector space over the reals R, then only real numbers in C are
linear combinations of x1: Therefore x1 is no longer a basis when we restrict to real
scalars.

It is also possible to have in�nite bases. However, some care must be taken
in de�ning this concept as we are not allowed to form in�nite linear combinations.
We say that a vector space V over F has a collection xi 2 V; where i 2 A is some
possibly in�nite index set, as a basis, if each x 2 V is a linear combination of a �nite
number of the vectors xi is a unique way. There is, surprisingly, only one important
vector space that comes endowed with a natural in�nite basis. This is the space
F [t] of polynomials. The collection xi = ti; i = 0; 1; 2; ::: evidently gives us a basis.
The other spaces F [[t]] and Func (S;F) ; where S is in�nite, do not come with any
natural bases. There is a rather subtle theorem which asserts that every vector
space must have a basis. It is somewhat beyond the scope of this text to prove
this theorem as it depends on Zorn�s lemma or equivalently the axiom of choice. It
should also be mentioned that it is a mere existence theorem as it does not give a
procedure for constructing in�nite bases. In order to get around these nasty points
we resort to the trick of saying that a vector space is in�nite dimensional if it does
not admit a �nite basis. Note that in the above Lemma we can also show that if V
admits a basis with one element then it can�t have an in�nite basis.

Finally we need to mention some subtleties in the de�nition of a basis. In most
texts a distinction is made between an ordered basis x1; ::::; xn and a basis as a
subset

fx1; ::::; xng � V:
There is a �ne di¤erence between these two concepts. The collection x1; x2 where
x1 = x2 = x 2 V can never be a basis as x can be written as a linear combination
of x1 and x2 in at least two di¤erent ways. As a set, however, we see that fxg =
fx1; x2g consists of only one vector and therefore this redundancy has disappeared.
Throughout this text we assume that bases are ordered. This is entirely reasonable
as most people tend to write down a collection of elements of a set in some, perhaps
arbitrary, order. It is also important and convenient to work with ordered bases
when time comes to discuss matrix representations. On the few occasions where
we shall be working with in�nite bases, as with F [t] ; they will also be ordered in a
natural way using either the natural numbers or the integers.
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5.1. Exercises.
(1) Show that 1; t; :::; tn form a basis for Pn:
(2) Show that if p0; :::; pn 2 Pn satisfy deg (pk) = k; then they form a basis

for Pn:
(3) Find a basis p1; :::; p4 2 P3 such that deg (pi) = 3 for i = 1; 2; 3; 4.
(4) For � 2 C consider the subset

Q [�] = fp (�) : p 2 Q [t]g � C:
Show that
(a) If � 2 Q then Q [�] = Q
(b) If � is algebraic, i.e., it solves an equation p (�) = 0 for some p 2 Q [t] ;

then Q [�] is a �eld that contains Q: Hint: Show that � must be the
root of a polynomial with a nonzero constant term. Use this to �nd
a formula for ��1 that depends only on positive powers of �:

(c) If � is algebraic, then Q [�] is a �nite dimensional vector space over
Q with a basis 1; �; �2; :::; �n�1 for some n 2 N: Hint: Let n be the
smallest number so that �n is a linear combination of 1; �; �2; :::; �n�1:
You must explain why we can �nd such n:

(d) Show that � is algebraic if and only if Q [�] is �nite dimensional over
Q:

(e) We say that � is transcendental if it is not algebraic. Show that if
� is transcendental then 1; �; �2; :::; �n; ::: form an in�nite basis for
Q [�]. Thus Q [�] and Q [t] represent the same vector space via the
substitution t ! �:

(5) Show that2664
1
1
0
0

3775 ;
2664
1
0
1
0

3775 ;
2664
1
0
0
1

3775 ;
2664
0
1
1
0

3775 ;
2664
0
1
0
1

3775 ;
2664
0
0
1
1

3775
span C4; i.e., every vector on C4 can be written as a linear combination of
these vectors. Which collections of those six vectors form a basis for C4?

(6) Is it possible to �nd a basis x1; :::; xn for Fn so that the ith entry for all
of the vectors x1; :::; xn is zero?

(7) If e1; :::; en is the standard basis for Cn; show that both
e1; :::; en; ie1; :::; ien; and

e1; ie1; :::; en; ien

form bases for Cn when viewed as a real vector space.
(8) If x1; :::; xn is a basis for the real vector space V; then it is also a basis

for the complexi�cation VC (see the exercises to �Vector Spaces� for the
de�nition of VC).

(9) Find a basis for R3 where all coordinate entries are �1:
(10) A subspace M � Matn�n (F) is called a two-sided ideal if for all X 2

Matn�n (F) and A 2 M also XA;AX 2 M: Show that if M 6= f0g ; then
M = Matn�n (F) : Hint: Find A 2 M such some entry is 1: Then show
that we can construct the standard basis for Matn�n (F) by multiplying
A by the stardard basis matrices for Matn�n (F) on the left and right.

(11) Let V be a vector space.
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(a) Show that x; y 2 V form a basis if and only if x + y; x � y form a
basis.

(b) Show that x; y; z 2 V form a basis if and only if x + y; y + z; z + x
form a basis.

6. Linear Maps

A map L : V ! W between vector spaces over the same �eld F is said to be
linear if it preserves scalar multiplication and addition in the following way

L (�x) = �L (x) ;

L (x+ y) = L (x) + L (y) ;

where � 2 F and x; y 2 V: It is possible to collect these two properties into one
condition as follows

L (�1x1 + �2x2) = �1L (x1) + �2L (x2) ;

where �1; �2 2 F and x1; x2 2 V: More generally we have that L preserves linear
combinations in the following way

L

0B@� x1 � � � xm
� 264 �1

...
�m

375
1CA = L (x1�1 + � � �+ xm�m)

= L (x1)�1 + � � �+ L (xm)�m

=
�
L (x1) � � � L (xm)

� 264 �1
...
�m

375
To prove this simple fact we use induction on m: When m = 1, this is simply the
fact that L preserves scalar multiplication

L (�x) = �L (x) :

Assuming the induction hypothesis, that the statement holds for m�1; we see that
L (x1�1 + � � �+ xm�m) = L ((x1�1 + � � �+ xm�1�m�1) + xm�m)

= L (x1�1 + � � �+ xm�1�m�1) + L (xm�m)
= (L (x1)�1 + � � �+ L (xm�1)�m�1) + L (xm)�m
= L (x1)�1 + � � �+ L (xm)�m:

The important feature of linear maps is that they preserve the operations that
are allowed on the spaces we work with. Some extra terminology is often used
for linear maps. If the values are the �eld itself, i.e., W = F, then we also call
L : V ! F a linear function or linear functional. If V =W; then we call L : V ! V
a linear operator.

Before giving examples we introduce some further notation. The set of all linear
maps fL : V !Wg is often denoted hom (V;W ) : In case we need to specify the
scalars we add the �eld as a subscript homF (V;W ) : The abbreviation hom stands
for homomorphism. Homomorphisms are in general maps that preserve whatever
algebraic structure that is available. Note that

homF (V;W ) � Map (V;W )
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and is a subspace of the latter. Thus homF (V;W ) is a vector space over F:
It is easy to see that the composition of linear maps always yields a linear map.

Thus, if L1 : V1 ! V2 and L2 : V2 ! V3 are linear maps, then the composition
L2 � L1 : V1 ! V3 de�ned by L2 � L1 (x) = L2 (L1 (x)) is again a linear map.
We often ignore the composition sign � and simply write L2L1: An important
special situation is that one can �multiply� linear operators L1; L2 : V ! V via
composition. This multiplication is in general not commutative or abelian as it
rarely happens that L1L2 and L2L1 represent the same map. We shall see many
examples of this throughout the text.

Example 11. De�ne a map L : F ! F by scalar multiplication on F via
L (x) = �x for some � 2 F: The distributive law says that the map is additive and
the associative law together with the commutative law say that it preserves scalar
multiplication. This example can now easily be generalized to scalar multiplication
on a vector space V; where we can also de�ne L (x) = �x:

Two special cases are of particular interest. First the identity transformation
1V : V ! V de�ned by 1V (x) = x. This is evidently scalar multiplication by 1:
Second we have the zero transformation 0 = 0V : V ! V that maps everything to
0 2 V and is simply multiplication by 0: The latter map can also be generalized
to a zero map 0 : V ! W between di¤erent vector spaces. With this in mind we
can always write multiplication by � as the map �1V thus keeping track of what
it does, where it does it, and �nally keeping track of the fact that we think of the
procedure as a map.

Expanding on this theme a bit we can, starting with a linear operator L : V !
V; use powers of L as well as linear combinations to create new operators on V: For
instance, L2 � 3 � L+ 2 � 1V is de�ned by�

L2 � 3 � L+ 2 � 1V
�
(x) = L (L (x))� 3L (x) + 2x:

We shall often do this in quite general situations. The most general construction
comes about by selecting a polynomial p 2 F [t] and considering p (L) : If p =
�kt

k + � � �+ �1t+ �0; then
p (L) = �kL

k + � � �+ �1L+ �01V :
If we think of t0 = 1 as the degree 0 term in the polynomial then by substituing L we
apparently de�ne L0 = 1V : So still the identity, but the identity in the appropriate
set where L lives. Evaluation on x 2 V is given by

p (L) (x) = �kL
k (x) + � � �+ �1L (x) + �0x:

Apparently p simply de�nes a linear combination of the linear operators Lk; :::; L;
1V and p (L) (x) is a linear combination of the vectors Lk (x) ; :::; L (x) ; x:

Example 12. Fix x 2 V: Note that the axioms of scalar multiplication also
imply that L : F! V de�ned by L (�) = x� is linear.

Example 13. Matrix multiplication is the next level of abstraction. Here we
let V = Fm and W = Fn and L is represented by an n�m matrix

B =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375 :



6. LINEAR MAPS 17

The map is de�ned using matrix multiplication as follows

L (x) = Bx

=

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
264 �1

...
�m

375
=

264 �11�1 + � � �+ �1m�m
...

�n1�1 + � � �+ �nm�m

375
Thus the ith coordinate of L (x) is given by

mX
j=1

�ij�j = �i1�1 + � � �+ �im�m:

A similar and very important way of representing this map comes by noting that it
creates linear combinations. Write B as a row matrix of its column vectors

B =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375 = � b1 � � � bm
�
; where bi =

264 �1i
...
�ni

375
and then observe

L (x) = Bx

=
�
b1 � � � bm

� 264 �1
...
�m

375
= b1�1 + � � �+ bm�m:

Note that, if m = n and the matrix we use is a diagonal matrix with �s down
the diagonal and zeros elsewhere, then we obtain the scalar multiplication map
�1Fn : The matrix looks like this26664

� 0 � � � 0
0 � 0
...

. . .
...

0 0 � � � �

37775
A very important observation in connection with linear maps de�ned by matrix
multiplication is that composition of linear maps L : Fl ! Fm and K : Fm ! Fn is
given by the matrix product. The maps are de�ned by matrix multiplication

L (x) = Bx;

B =
�
b1 � � � bl

�
and

K (y) = Cy:
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The composition can now be computed as follows using that K is linear

(K � L) (x) = K (L (x))

= K (Bx)

= K

0B@� b1 � � � bl
� 264 �1

...
�l

375
1CA

=
�
K (b1) � � � K (bl)

� 264 �1
...
�l

375
=

��
Cb1 � � � Cbl

�� 264 �1
...
�l

375
=

�
C
�
b1 � � � bl

�� 264 �1
...
�l

375
= (CB)x:

Evidently this all hinges on the fact that the matrix product CB can be de�ned by

CB = C
�
b1 � � � bl

�
=

�
Cb1 � � � Cbl

�
;

a de�nition that is completely natural if we think of C as a linear map. It should
also be noted that we did not use associativity of matrix multiplication in the form
C (Bx) = (CB)x: In fact associativity is a consequence of our calculation.

We can also check things a bit more directly using summation notation. Ob-
serve that the ith entry in the composition

K

0B@L
0B@
264 �1

...
�l

375
1CA
1CA =

264 
11 � � � 
1m
...

. . .
...


n1 � � � 
nm

375
0B@
264 �11 � � � �1l

...
. . .

...
�m1 � � � �ml

375
264 �1
...
�l

375
1CA

satis�es
mX
j=1


ij

 
lX

s=1

�js�s

!
=

mX
j=1

lX
s=1


ij�js�s

=
lX

s=1

mX
j=1


ij�js�s

=
lX

s=1

0@ mX
j=1


ij�js

1A �s

were
�Pm

j=1 
ij�js

�
represents the (i; s) entry in the matrix product

�

ij
� �
�js
�
.

Example 14. Note that while scalar multiplication on even the simplest vector
space F is the simplest linear map we can have, there are still several levels of
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complexity here depending on what �eld we use. Let us consider the map L : C! C
that is multiplication by i; i.e., L (x) = ix: If we write x = � + i� we see that
L (x) = �� + i�: Geometrically what we are doing is rotating x 90�: If we think of
C as the plane R2 the map is instead given by the matrix�

0 �1
1 0

�
which is not at all scalar multiplication if we only think in terms of real scalars.
Thus a supposedly simple operation with complex numbers is somewhat less simple
when we forget complex numbers. What we need to keep in mind is that scalar
multiplication with real numbers is simply a form of dilation where vectors are
made longer or shorter depending on the scalar. Scalar multiplication with complex
numbers is from an abstract algebraic viewpoint equally simple to write down, but
geometrically such an operation can involve a rotation from the perspective of a
world where only real scalars exist.

Example 15. The ith coordinate map Fn ! F de�ned by

dxi (x) = dxi

0BBBBBB@

26666664

�1
...
�i
...
�n

37777775

1CCCCCCA

= [0 � � � 1 � � � 0]

26666664

�1
...
�i
...
�n

37777775
= �i:

is a linear map. Here the 1 � n matrix [0 � � � 1 � � � 0] is zero everywhere except in
the ith entry where it is 1: The notation dxi is not a mistake, but an incursion
from multivariable calculus. While some mystifying words involving in�nitesimals
often are invoked in connection with such symbols, they have in more advanced and
modern treatments of the subject simply been rede�ned as done here. No mystery
at all de�nitionwise, but it is perhaps no clearer why it has anything to do with
integration and di¤erentiation.

A special piece of notation comes in handy in here. The Kronecker � symbol is
de�ned as

�ij =

�
0 if i 6= j
1 if i = j

Thus the matrix [0 � � � 1 � � � 0] can also be written as�
0 � � � 1 � � � 0

�
=

�
�i1 � � � �ii � � � �in

�
=

�
�i1 � � � �in

�
:
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The matrix representing the identity map 1Fn can then we written as264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375 :
Example 16. Let us consider the vector space of functions C1 (R;R) that have

derivatives of all orders. There are several interesting linear operators C1 (R;R)!
C1 (R;R)

D (f) (t) =
df

dt
(t) ;

S (f) (t) =

Z t

t0

f (s) ds;

T (f) (t) = t � f (t) :

In a more shorthand fashion we have the di¤erentiation operator D (f) = f 0; the
integration operator S (f) =

R
f; and the multiplication operator T (f) = tf: Note

that the integration operator is not well-de�ned unless we use the de�nite integral
and even in that case it depends on the value t0. These three operators are also
de�ned as operators R [t] ! R [t] : In this case we usually let t0 = 0 for S: These
operators have some interesting relationships. We point out a very intriguing one

DT � TD = 1:

To see this simply use Leibniz�rule for di¤erentiating a product to obtain

D (T (f)) = D (tf)

= f + tDf

= f + T (D (f)) :

With some slight changes the identity DT � TD = 1 is the Heisenberg Commu-
tation Law. This law is important in the veri�cation of Heisenberg�s Uncertainty
Principle.

The trace is a linear map on square matrices that simply adds the diagonal
entries.

tr : Matn�n (F)! F;
tr (A) = �11 + �22 + � � �+ �nn:

The trace satis�es the following important commutation relationship.

Lemma 2. (Invariance of Trace) If A 2 Matm�n (F) and B 2 Matn�m (F) ;
then AB 2 Matm�m (F), BA 2 Matn�n (F) and

tr (AB) = tr (BA) :
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Proof. We write out the matrices

A =

264 �11 � � � �1n
...

. . .
...

�m1 � � � �mn

375
B =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
Thus

AB =

264 �11 � � � �1n
...

. . .
...

�m1 � � � �mn

375
264 �11 � � � �1m

...
. . .

...
�n1 � � � �nm

375
=

264 �11�11 + � � �+ �1n�n1 � � � �11�1m + � � �+ �1n�nm
...

. . .
...

�m1�11 + � � �+ �mn�n1 � � � �m1�1m + � � �+ �mn�nm

375

BA =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
264 �11 � � � �1n

...
. . .

...
�m1 � � � �mn

375
=

264 �11�11 + � � �+ �1m�m1 � � � �11�1n + � � �+ �1m�mn
...

. . .
...

�n1�11 + � � �+ �nm�m1 � � � �n1�1n + � � �+ �nm�mn

375
This tells us that AB 2 Matm�m (F) and BA 2 Matn�n (F) : To show the identity
note that the (i; i) entry in AB is

Pn
j=1 �ij�ji; while the (j; j) entry in BA isPm

i=1 �ji�ij : Thus

tr (AB) =
mX
i=1

nX
j=1

�ij�ji;

tr (BA) =
nX
j=1

mX
i=1

�ji�ij :

By using �ij�ji = �ji�ij and

mX
i=1

nX
j=1

=
nX
j=1

mX
i=1

we see that the two traces are equal. �

This allows us to show that Heisenberg Commutation Law cannot be true for
matrices.

Corollary 1. There are no matrices A;B 2 Matn�n (F) such that

AB �BA = 1:
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Proof. By the above Lemma and linearity we have that tr (AB �BA) = 0:
On the other hand tr (1Fn) = n; since the identity matrix has n diagonal entries
each of which is 1: �

Observe that we just used the fact that n 6= 0 in F; or in other words that F
has characteristic zero. If we allowed ourselves to use the �eld F2 = f0; 1g where
1 + 1 = 0; then we have that 1 = �1: Thus we can use the matrices

A =

�
0 1
0 0

�
;

B =

�
0 1
1 0

�
;

to get the Heisenberg commutation law satis�ed:

AB �BA =

�
0 1
0 0

� �
0 1
1 0

�
�
�
0 1
1 0

� �
0 1
0 0

�
=

�
1 0
0 0

�
�
�
0 0
0 1

�
=

�
1 0
0 �1

�
=

�
1 0
0 1

�
:

We have two further linear maps. Consider V = Func (S;F) and select s0 2 S;
then the evaluation map evs0 : Func (S;F) ! F de�ned by evs0 (f) = f (s0) is
linear. More generally we have the restriction map for T � S de�ned as a linear
maps Func (S;F)! Func (T;F) ; by mapping f to f jT : The notation f jT means that
we only consider f as mapping from T into F: In other words we have forgotten
that f maps all of S into F and only remembered what it did on T:

Linear maps play a big role in multivariable calculus and are used in a number
of ways to clarify and understand certain constructions. The fact that linear algebra
is the basis for multivariable calculus should not be surprising as linear algebra is
merely a generalization of vector algebra.

Let F : 
 ! Rn be a di¤erentiable function de�ned on some open domain

 � Rm: The di¤erential of F at x0 2 
 is a linear map DFx0 : Rm ! Rn that can
be de�ned via the limiting process

DFx0 (h) = lim
t!0

F (x0 + th)� F (x0)
t

:

Note that x0+th describes a line parametrized by t passing through x0 and points in
the direction of h: This de�nition tells us that DFx0 preserves scalar multiplication
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as

DFx0 (�h) = lim
t!0

F (x0 + t�h)� F (x0)
t

= � lim
t!0

F (x0 + t�h)� F (x0)
t�

= � lim
t�!0

F (x0 + t�h)� F (x0)
t�

= � lim
s!0

F (x0 + sh)� F (x0)
s

= �DFx0 (h) :

Additivity is another matter however. Thus one often reverts to the trick of saying
that F is di¤erentiable at x0 provided we can �nd a linear map L : Rm ! Rn
satisfying

lim
jhj!0

jF (x0 + h)� F (x0)� L (h)j
jhj = 0

One then proves that such a linear map must be unique and then renames it L =
DFx0 : In case F is continuously di¤erentiable, DFx0 is also given by the n � m
matrix of partial derivatives

DFx0 (h) = DFx0

0B@
264 h1

...
hm

375
1CA

=

264
@F1
@x1

� � � @F1
@xm

...
. . .

...
@Fn
@x1

� � � @Fn
@xm

375
264 h1

...
hm

375

=

264
@F1
@x1

h1 + � � �+ @F1
@xm

hm
...

@Fn
@x1

h1 + � � �+ @Fn
@xm

hm

375
One of the main ideas in di¤erential calculus (of several variables) is that linear

maps are simpler to work with and that they give good local approximations to
di¤erentiable maps. This can be made more precise by observing that we have the
�rst order approximation

F (x0 + h) = F (x0) +DFx0 (h) + o (h) ;

lim
jhj!0

jo (h)j
jhj = 0

One of the goals of di¤erential calculus is to exploit knowledge of the linear map
DFx0 and then use this �rst order approximation to get a better understanding of
the map F itself.

In case f : 
 ! R is a function one often sees the di¤erential of f de�ned as
the expression

df =
@f

@x1
dx1 + � � �+

@f

@xm
dxm:
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Having now interpreted dxi as a linear function we then observe that df itself is a
linear function whose matrix description is given by

df (h) =
@f

@x1
dx1 (h) + � � �+

@f

@xm
dxm (h)

=
@f

@x1
h1 + � � �+

@f

@xm
hm

=
h

@f
@x1

� � � @f
@xm

i264 h1
...
hm

375 :
More generally, if we write

F =

264 F1
...
Fn

375 ;
then

DFx0 =

264 dF1
...

dFn

375
with the understanding that

DFx0 (h) =

264 dF1 (h)
...

dFn (h)

375 :
Note how this conforms nicely with the above matrix representation of the di¤er-
ential.

6.1. Exercises.
(1) Let V;W be vector spaces over Q: Show that any additive map L : V !W;

i.e.,
L (x1 + x2) = L (x1) + L (x2) ;

is linear.
(2) Show that D : F [t]! F [t] de�ned by

D (�0 + �1t+ � � �+ �ntn) = �1 + 2�2t+ � � �+ n�ntn�1

is a linear map.
(3) If L : V ! V is a linear operator, then K : F [t]! hom (V; V ) de�ned by

K (p) = p (L) is a linear map.
(4) If T : V ! W is a linear operator, and ~V is a vector space, then right

multiplication

RT : hom
�
W; ~V

�
! hom

�
V; ~V

�
de�ned by RT (K) = K � T and left multiplication

LT : hom
�
~V ; V

�
! hom

�
~V ;W

�
de�ned by LT (K) = T �K are linear operators.
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(5) If A 2 Matn�n (F) is upper triangular, i.e., �ij = 0 for i > j or

A =

26664
�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...
0 0 � � � �nn

37775 ;
and p (t) 2 F [t] ; then p (A) is also upper triangular and the diagonal
entries are p (�ii) ; i.e.,

p (A) =

26664
p (�11) � � � � �
0 p (�22) � � � �
...

...
. . .

...
0 0 � � � p (�nn)

37775 :
(6) Let t1; :::; tn 2 R and de�ne

L : C1 (R;R)! Rn

L (f) = (f (t1) ; :::; f (tn)) :

Show that L is linear.
(7) Let t0 2 R and de�ne

L : C1 (R;R)! Rn

L (f) =
�
f (t0) ; (Df) (t0) ; :::;

�
Dn�1f

�
(t0)

�
:

Show that L is linear.
(8) Let A 2 Matn�n (R) be symmetric, i.e., the (i; j) entry is the same as the

(j; i) entry. Show that A = 0 if and only if tr
�
A2
�
= 0:

(9) For each n � 2 �nd A 2 Matn�n (F) such that A 6= 0; but tr
�
Ak
�
= 0 for

all k = 1; 2; ::::
(10) Find A 2 Mat2�2 (R) such that tr

�
A2
�
< 0:

7. Linear Maps as Matrices

We saw above that quite a lot of linear maps can be de�ned using matrices. In
this section we shall reverse this construction and show that all abstractly de�ned
linear maps between �nite dimensional vector spaces come from some basic matrix
constructions.

To warm up we start with the simplest situation.

Lemma 3. Assume V is one dimensional over F, then any L : V ! V is of the
form L = �1V :

Proof. Assume x1 is a basis. Then L (x1) = �x1 for some � 2 F: Now any
x = �x1 so L (x) = L (�x1) = �L (x1) = ��x1 = �x as desired. �

This gives us a very simple canonical form for linear maps in this elementary
situation. The rest of the section tries to explain how one can generalize this to
vector spaces with �nite bases.

Possibly the most important abstractly de�ned linear map comes from consid-
ering linear combinations. We �x a vector space V over F and select x1; :::; xm 2 V:
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Then we have a linear map

L : Fm ! V

L

0B@
264 �1

...
�m

375
1CA =

�
x1 � � � xm

� 264 �1
...
�m

375
= x1�1 + � � �+ xm�m:

The fact that it is linear follows from knowing that L : F! V de�ned by L (�) = �x
is linear together with the fact that sums of linear maps are linear. We shall denote
this map by its row matrix

L =
�
x1 � � � xm

�
;

where the entries are vectors. Using the standard basis e1; :::; em for Fm we observe
that the entries xi (think of them as column vectors) satisfy

L (ei) =
�
x1 � � � xm

�
ei = xi:

Thus the vectors that form the columns for the matrix for L are the images of the
basis vectors for Fm: With this in mind we can show

Lemma 4. Any linear map L : Fm ! V is of the from

L =
�
x1 � � � xm

�
where xi = L (ei) :

Proof. De�ne L (ei) = xi and use linearity of L to see that

L

0B@
264 �1

...
�m

375
1CA = L

0B@� e1 � � � em
� 264 �1

...
�m

375
1CA

= L (e1�1 + � � �+ em�m)
= L (e1)�1 + � � �+ L (em)�m

=
�
L (e1) � � � L (em)

� 264 �1
...
�m

375
=

�
x1 � � � xm

� 264 �1
...
�m

375 :
�

In case we specialize to the situation where V = Fn the vectors x1; :::; xm really
are n� 1 column matrices. If we write them accordingly

xi =

264 �1i
...
�ni

375 ;
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then

�
x1 � � � xm

� 264 �1
...
�m

375 = x1�1 + � � �+ xm�m

=

264 �11
...
�n1

375�1 + � � �+
264 �1m

...
�nm

375�m
=

264 �11�1
...

�n1�1

375+ � � �+
264 �1m�m

...
�nm�m

375
=

264 �11�1 + � � �+ �1m�m
...

�n1�1 + � � �+ �nm�m

375
=

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
264 �1

...
�m

375 :
Hence any linear map Fm ! Fn is given by matrix multiplication, and the columns
of the matrix are the images of the basis vectors of Fm:

We can also use this to study maps V !W as long as we have bases e1; :::; em
for V and f1; :::; fn for W: Each x 2 V has a unique expansion

x =
�
e1 � � � em

� 264 �1
...
�m

375 :
So if L : V !W is linear, then

L (x) = L

0B@� e1 � � � em
� 264 �1

...
�m

375
1CA

=
�
L (e1) � � � L (em)

� 264 �1
...
�m

375
=

�
x1 � � � xm

� 264 �1
...
�m

375 ;
where xi = L (ei) : In e¤ect we have proven that

L �
�
e1 � � � em

�
=
�
L (e1) � � � L (em)

�
if we interpret �

e1 � � � em
�
: Fm ! V;�

L (e1) � � � L (em)
�
: Fm !W
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as linear maps.
Expanding L (ei) = xi with respect to the basis for W gives us

xi =
�
f1 � � � fn

� 264 �1i
...
�ni

375
and

�
x1 � � � xm

�
=
�
f1 � � � fn

� 264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375 :
This gives us the matrix representation for a linear map V ! W with respect to
the speci�ed bases.

L (x) =
�
x1 � � � xm

� 264 �1
...
�m

375
=

�
f1 � � � fn

� 264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
264 �1

...
�m

375 :
We will often use the terminology

[L] =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
for the matrix representing L: The way to remember the formula for [L] is to use

L �
�
e1 � � � em

�
=

�
L (e1) � � � L (em)

�
=

�
f1 � � � fn

�
[L] :

In the special case where L : V ! V is a linear operator one usually only selects
one basis e1; :::; en: In this case we get the relationship

L �
�
e1 � � � en

�
=

�
L (e1) � � � L (en)

�
=

�
e1 � � � en

�
[L]

for the matrix representation.

Example 17. Let

Pn = f�0 + �1t+ � � �+ �ntn : �0; �1; :::; �n 2 Fg

be the space of polynomials of degree � n and D : V ! V the di¤erentiation
operator

D (�0 + �1t+ � � �+ �ntn) = �1 + � � �+ n�ntn�1:
If we use the basis 1; t; :::; tn for V then we see that

D
�
tk
�
= ktk�1



7. LINEAR MAPS AS MATRICES 29

and thus the (n+ 1)� (n+ 1) matrix representation is computed via�
D (1) D (t) D

�
t2
�
� � � D (tn)

�
=

�
0 1 2t � � � ntn�1

�

=
�
1 t t2 � � � tn

�
26666664

0 1 0 � � � 0
0 0 2 � � � 0

0 0 0
. . . 0

...
...
...
. . . n

0 0 0 � � � 0

37777775 :

Example 18. Next consider the maps T; S : Pn ! Pn+1 de�ned by

T (�0 + �1t+ � � �+ �ntn) = �0t+ �1t
2 + � � �+ �ntn+1;

S (�0 + �1t+ � � �+ �ntn) = �0t+
�1
2
t2 + � � �+ �n

n+ 1
tn+1:

This time the image space and domain are not the same but the choices for basis
are at least similar. We get the (n+ 2)� (n+ 1) matrix representations�

T (1) T (t) T
�
t2
�
� � � T (tn)

�
=

�
t t2 t3 � � � tn+1

�

=
�
1 t t2 t3 � � � tn+1

�
2666666664

0 0 0 � � � 0
1 0 0 � � � 0
0 1 0 � � � 0

0 0 1
. . .

...
...
...
...
. . . 0

0 0 0 � � � 1

3777777775
�
S (1) S (t) S

�
t2
�
� � � S (tn)

�
=

�
t 1

2 t
2 1

3 t
3 � � � 1

n+1 t
n+1

�

=
�
1 t t2 t3 � � � tn+1

�
2666666664

0 0 0 � � � 0
1 0 0 � � � 0
0 1

2 0 � � � 0

0 0 1
3

. . .
...

...
...

...
. . . 0

0 0 0 � � � 1
n

3777777775
Doing a matrix representation of a linear map that is already given as a matrix

can get a little confusing, but the procedure is obviously the same.

Example 19. Let

L =

�
1 1
0 2

�
: F2 ! F2

and consider the basis

x1 =

�
1
0

�
; x2 =

�
1
1

�
:
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Then

L (x1) = x1;

L (x2) =

�
2
2

�
= 2x2:

So �
L (x1) L (x2)

�
=
�
x1 x2

� � 1 0
0 2

�
:

Example 20. Let

L =

�
1 1
0 2

�
: F2 ! F2

and consider the basis

x1 =

�
1
�1

�
; x2 =

�
1
1

�
:

Then

L (x1) =

�
0
�2

�
= x1 � x2;

L (x2) =

�
2
2

�
= 2x2:

So �
L (x1) L (x2)

�
=
�
x1 x2

� � 1 0
�1 2

�
:

Example 21. Let

A =

�
a c
b d

�
2 Mat2�2 (F)

and consider

LA : Mat2�2 (F)! Mat2�2 (F)
LA (X) = AX:

We use the basis Eij for Matn�n (F) where the ij entry in Eij is 1 and all other
entries are zero. Next order the basis E11; E21; E12; E22: This means that we think
of Mat2�2 (F) � F4 were the columns are stacked on top of each other with the �rst
column being the top most. With this choice of basis we note that�

LA (E11) LA (E21) LA (E12) LA (E22)
�

=
�
AE11 AE21 AE12 AE22

�
=

��
a 0
b 0

� �
c 0
d 0

� �
0 a
0 b

� �
0 c
0 d

��

=
�
E11 E21 E12 E22

� 2664
a c 0 0
b d 0 0
0 0 a c
0 0 b d

3775
Thus LA has the block diagonal form�

A 0
0 A

�
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This problem easily generalizes to the case of n� n matrices, where LA will have a
block diagonal form that looks like26664

A 0 � � � 0
0 A 0
...

. . .
...

0 0 � � � A

37775
Example 22. Let L : Fn ! Fn be a linear map which maps basis vectors to

basis vectors. Thus L (ej) = e�(j); where

� : f1; :::; ng ! f1; :::; ng :

If � is one-to-one and onto then it is called a permutation. Apparently it permutes
the elements of f1; :::; ng : The corresponding linear map is denoted L�. The matrix
representation of L� can be computed from the simple relationship L� (ej) = e�(j):

Thus the jth column has zeros everywhere except for a 1 in the � (j) entry. This
means that [L�] =

�
�i;�(j)

�
: The matrix [L�] is also known as a permutation matrix.

Example 23. Let L : V ! V be a linear map whose matrix representation
with respect to the basis x1; x2 is given by�

1 2
0 1

�
:

We wish to compute the matrix representation of K = 2L2 + 3L � 1V : We know
that �

L (x1) L (x2)
�
=
�
x1 x2

� � 1 2
0 1

�
or equivalently

L (x1) = x1;

L (x2) = 2x1 + x2:

Thus

K (x1) = 2L (L (x1)) + 3L (x1)� 1V (x1)
= 2L (x1) + 3x1 � x1
= 2x1 + 3x1 � x1
= 4x1;

K (x2) = 2L (L (x2)) + 3L (x2)� 1V (x2)
= 2L (2x1 + x2) + 3 (2x1 + x2)� x2
= 2 (2x1 + (2x1 + x2)) + 3 (2x1 + x2)� x2
= 14x1 + 4x2;

and �
K (x1) K (x2)

�
=
�
x1 x2

� � 1 14
0 4

�
:
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7.1. Exercises.

(1) (a) Show that t3; t3 + t2; t3 + t2 + t; t3 + t2 + t+ 1 form a basis for P3:
(b) Compute the image of (1; 2; 3; 4) under the coordinate map�

t3 t3 + t2 t3 + t2 + t t3 + t2 + t+ 1
�
: F4 ! P3

(c) Find the vector in F4 whose image is 4t3 + 3t2 + 2t+ 1:
(2) Find the matrix representation for D : P3 ! P3 with respect to the basis

t3; t3 + t2; t3 + t2 + t; t3 + t2 + t+ 1:
(3) Find the matrix representation for

D2 + 2D + 1 : P3 ! P3

with respect to the standard basis 1; t; t2; t3:
(4) If L : V ! V is a linear operator on a �nite dimensional vector space and

p (t) 2 F [t] ; then the matrix representations for L and p (L) with respect
to some �xed basis are related by [p (L)] = p ([L]) :

(5) Consider the two linear maps L;K : Pn ! Cn+1 de�ned by

L (f) = (f (t0) ; :::; f (tn))

K (f) = (f (t0) ; (Df) (t0) ; :::; (D
nf) (t0)) :

(a) Find a basis p0; :::; pn for Pn such that K (pi) = ei; where e1; :::; en
is the canonical basis for Cn+1:

(b) Provided t0; :::; tn are distinct �nd a basis q0; :::; qn for Pn such that
L (qi) = ei:

(6) Let

A =

�
a c
b d

�
and consider the linear map RA : Mat2�2 (F) ! Mat2�2 (F) de�ned by
RA (X) = XA: Compute the matrix representation of this linear maps
with respect to the basis

E11 =

�
1 0
0 0

�
;

E21 =

�
0 0
1 0

�
;

E12 =

�
0 1
0 0

�
;

E22 =

�
0 0
0 1

�
:

(7) Compute a matrix representation for L : Mat2�2 (F) ! Mat1�2 (F) de-
�ned by L (X) =

�
1 �1

�
X:

(8) Let A 2 Matn�m (F) and Eij the matrix that has 1 in the ij entry and is
zero elsewhere.
(a) If Eij 2 Matk�n (F) ; then EijA 2 Matk�m (F) is the matrix whose

ith row is the jth row of A and all other entries are zero.
(b) If Eij 2 Matn�k (F) ; then AEij 2 Matn�k (F) is the matrix whose

jth column is the ith column of A and all other entries are zero.
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(9) Let e1; e2 be the standard basis for C2 and consider the two real bases
e1; e2; ie1; ie2 and e1; ie1; e2; ie2: If � = �+ i� is a complex number, then
compute the real matrix representations for �1C2 with respect to both
bases.

(10) If L : V ! V has a lower triangular representation with respect to the
basis x1; :::; xn; then it has an upper triangular representation with respect
to xn; :::; x1:

(11) Let V and W be vector spaces with bases e1; :::; em and f1; :::; fn respec-
tively. De�ne Eij 2 hom (V;W ) as the linear map that sends ej to fi and
all other eks go to zero, i.e., Eij (ek) = �jkfi:
(a) Show that the matrix representation for Eij is 1 in the ij entry and

0 otherwise.
(b) Show that Eij form a basis for hom (V;W ) :
(c) If L 2 hom (V;W ) ; then L =

P
i;j �ijEij : Show that [L] = [�ij ] with

respect to these bases.

8. Dimension and Isomorphism

We are now almost ready to prove that the number of elements in a basis for
a �xed vector space is always the same.

Two vector spaces V and W over F are said to be isomorphic if we can �nd
linear maps L : V ! W and K : W ! V such that LK = 1W and KL = 1V : One
can also describe the equations LK = 1W and KL = 1V in an interesting little
diagram of maps

V
L�! W

" 1V " 1W
V

K � W

where the vertical arrows are the identity maps.
We also say that a linear map L : V ! W is an isomorphism if we can �nd

K :W ! V such that LK = 1W and KL = 1V :
Note that if V1 and V2 are isomorphic and V2 and V3 are isomorphic, then also

V1 and V3 must be isomorphic by composition of the given isomorphisms.
Recall that a map f : S ! T between sets is one-to-one or injective if f (x1) =

f (x2) implies that x1 = x2: A better name for this concept is two-to-two as pointed
out by R. Arens, since injective maps evidently take two distinct points to two
distinct points. We say that f : S ! T is onto or surjective if every y 2 T is of
the form y = f (x) for some x 2 S: In others words f (S) = T: A map that is both
one-to-one and onto is said to be bijective. Such a map always has an inverse f�1

de�ned via f�1 (y) = x if f (x) = y: Note that for each y 2 T such an x exists since
f is onto and that this x is unique since f is one-to-one. The relationship between
f and f�1 is f � f�1 (y) = y and f�1 � f (x) = x: Observe that f�1 : T ! S is also
a bijection and has inverse

�
f�1

��1
= f:

Lemma 5. V and W are isomorphic if and only if there is a bijective linear
map L : V !W .

The �if and only if�part asserts that the two statements

� V and W are isomorphic.
� There is a bijective linear map L : V !W .
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are equivalent. In other words, if one statement is true, then so is the other.
To establish the Lemma it is therefore necessary to prove two things, namely, that
the �rst statement implies the second and that the second implies the �rst.

Proof. If V and W are isomorphic, then we can �nd linear maps L : V !W
and K :W ! V so that LK = 1W and KL = 1V : Then for any y 2W

y = 1W (y) = L (K (y)) :

Thus y = L (x) if x = K (y) : This means L is onto. If L (x1) = L (x2) then

x1 = 1V (x1) = KL (x1) = KL (x2) = 1V (x2) = x2:

Showing that L is one-to-one:
Conversely assume L : V ! W is linear and a bijection. Then we have an

inverse map L�1 that satis�es L � L�1 = 1W and L�1 � L = 1V : In order for
this inverse to be allowable as K we need to check that it is linear. Thus select
�1; �2 2 F and y1; y2 2W: Let xi = L�1 (yi) so that L (xi) = yi: Then we have

L�1 (�1y1 + �2y2) = L�1 (�1L (x1) + �2L (x2))

= L�1 (L (�1x1 + �2x2))

= 1V (�1x1 + �2x2)

= �1x1 + �2x2

= �1L
�1 (y1) + �2L

�1 (y2)

as desired. �
Recall that a �nite basis for V over F consists of a collection of vectors x1; :::; xn 2

V so that each x has a unique expansion x = x1�1 + � � � + xn�n; �1; :::; �n 2 F:
This means that the linear map�

x1 � � � xn
�
: Fn ! V

is a bijection and hence by the above Lemma an isomorphism. We saw in the last
section that any linear map Fm ! V must be of this form. In particular, any
isomorphism Fm ! V gives rise to a basis for V: Since Fn is our prototype for
an n-dimensional vector space over F it is natural to say that a vector space has
dimension n if it is isomorphic to Fn. As we have just seen, this is equivalent to
saying that V has a basis consisting of n vectors. The only problem is that we don�t
know if two spaces Fm and Fn can be isomorphic when m 6= n: This is taken care
of next.

Theorem 1. (Uniqueness of Dimension) If Fm and Fn are isomorphic over F;
then n = m:

Proof. Suppose we have L : Fm ! Fn and K : Fn ! Fm such that LK = 1Fn
and KL = 1Fm : In �Linear maps as Matrices�we showed that the linear maps L
and K are represented by matrices, i.e., L 2 Matn�m (F) and K 2 Matm�n (F) :
Thus we have

n = tr (1Fn)

= tr (LK)

= tr (KL)

= tr (1Fm)

= m:
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�

This proof has the defect of only working when the �eld has characteristic
0: The result still holds in the more general situation where the characteristic is
nonzero. Other more standard proofs that work in these more general situations
can be found in �Linear Independence�and �Row Reduction�.

We can now unequivocally denote and de�ne the dimension of a vector space
V over F as dimF V = n if V is isomorphic to Fn. In case V is not isomorphic to
any Fn we say that V is in�nite dimensional and write dimF V =1:

Note that some vector spaces allow for several choices of scalars and the choice
of scalars can have a rather drastic e¤ect on what the dimension is. For example
dimC C = 1; while dimR C = 2: If we consider R as a vector space over Q something
even worse happens: dimQR =1: This is because R is not countably in�nite, while
all of the vector spaces Qn are countably in�nite. More precisely, it is possible to
�nd a bijective map f : N!Qn; but, as �rst observed by G. Cantor, there is no
bijective map f : N! R: Thus the reason why dimQR =1 is not solely a question
of linear algebra but a more fundamental one of having bijective maps between sets.

Corollary 2. If V and W are �nite dimensional vector spaces over F; then
homF (V;W ) is also �nite dimensional and

dimF homF (V;W ) = (dimFW ) � (dimF V )

Proof. By choosing bases for V and W we showed in �Linear Maps as Ma-
trices�that there is a natural map

homF (V;W )! Mat(dimFW )�(dimF V ) (F) ' F(dimFW )�(dimF V ):

This map is both one-to-one and onto as the matrix representation uniquely de-
termines the linear map and every matrix yields a linear map. Finally one easily
checks that the map is linear. �

In the special case where V = W and we have a basis for the n-dimensional
space V the linear isomorphism

homF (V; V ) ! Matn�n (F)

also preserves composition and products. Thus for L;K : V ! V we have

[LK] = [L] [K] :

The extra product structure on the two vector spaces homF (V; V ) and Matn�n (F)
make these spaces into so called algebras. Algebras are simply vector spaces that
in addition have a product structure. This product structure must satisfy the
associative law, the distributive law, and also commute with scalar multiplication.
Unlike a �eld it is not required that all nonzero elements have inverses. The above
isomorphism is what we call an algebra isomorphism.

8.1. Exercises.

(1) Let L;K : V ! V satisfy L �K = 0: Is it true that K � L = 0?
(2) Let L : V ! W be a linear map. Show that L is an isomorphism if and

only if it maps a basis for V to a basis for W:
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(3) If V is �nite dimensional show that V and homF (V;F) have the same
dimension and hence are isomorphic. Conclude that for each x 2 V �f0g
there exists L 2 homF (V;F) such that L (x) 6= 0: For in�nite dimensional
spaces such as R over Q it is much less clear that this is true.

(4) Consider the map

K : V ! homF (homF (V;F) ;F)

de�ned by the fact that

K (x) 2 homF (homF (V;F) ;F)
is the linear functional on homF (V;F) such that

K (x) (L) = L (x) ; for L 2 homF (V;F) :
Show that this map is one-to-one when V is �nite dimensional.

(5) Let V 6= f0g be �nite dimensional and assume that
L1; :::; Ln : V ! V

are linear operators. Show that if L1 � � � � �Ln = 0, then Li is not one-to-
one for some i = 1; :::; n:

(6) Let t0; :::; tn 2 R be distinct and consider Pn � C [t] : De�ne L : Pn !
Cn+1 by L (p) = (p (t0) ; :::; p (tn)) : Show that L is an isomorphism. (This
problem will be easier to solve later in the text.)

(7) Let t0 2 F and consider Pn � F [t] : Show that L : Pn ! Fn+1 de�ned by

L (p) = (p (t0) ; (Dp) (t0) ; :::; (D
np) (t0))

is an isomorphism. Hint: Think of a Taylor expansion at t0:
(8) Let V be �nite dimensional. Show that, if L1; L2 : Fn ! V are isomor-

phisms, then for any L : V ! V we have

tr
�
L�11 � L � L1

�
= tr

�
L�12 � L � L2

�
:

This means we can de�ne tr (L) : Hint: Try not to use explicit matrix
representations.

(9) If V and W are �nite dimensional and L1 : V !W and L2 :W ! V are
linear, then show that

tr (L1 � L2) = tr (L2 � L1)
(10) Construct an isomorphism V ! homF (F; V ).
(11) Let V be a complex vector space. Is the identity map V ! V � an isomor-

phism? (See exercises to �Vector Spaces�for a de�nition of V �).
(12) Assume that V and W are �nite dimensional. De�ne

homF (V;W ) ! homF (homF (W;V ) ;F) ;
L ! [A! tr (A � L)] :

Thus the linear map L : V !W is mapped to a linear map homF (W;V )!
F; that simply takes A 2 homF (W;V ) to tr (A � L) : Show that this map
is an isomorphism.

(13) Show that dimRMatn�n (C) = 2n2; while dimRMat2n�2n (R) = 4n2: Con-
clude that there must be matrices in Mat2n�2n (R) that do not come
from complex matrices in Matn�n (C) : Find an example of a matrix in
Mat2�2 (R) that does not come from Mat1�1 (C) :
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(14) ForA = [�ij ] 2 Matn�m (F) de�ne the transpose At =
�
�ij
�
2 Matm�n (F)

by �ij = �ji: Thus At is gotten from A by re�ecting in the diagonal en-
tries.
(a) Show that A ! At is a linear map which is also an isomorphism

whose inverse is given by B ! Bt:
(b) If A 2 Matn�m (F) and B 2 Matm�n (F) show that (AB)t = BtAt:
(c) Show that if A 2 Matn�n (F) is invertible, i.e., there exists A�1 2

Matn�n (F) such that

AA�1 = A�1A = 1Fn ;

then At is also invertible and (At)�1 =
�
A�1

�t
:

9. Matrix Representations Revisited

While the number of elements in a basis is always the same, there is unfortu-
nately not a clear choice of a basis for many abstract vector spaces. This necessitates
a discussion on the relationship between expansions of vectors in di¤erent bases.

Using the idea of isomorphism in connection with a choice of basis we can
streamline the procedure for expanding vectors and constructing the matrix repre-
sentation of a linear map.

Fix a linear map L : V ! W and bases e1; :::; em for V and f1; :::; fn for W:
One can then encode all of the necessary information in a diagram of maps

V
L�! W

" "
Fm [L]�! Fn

In this diagram the top horizontal arrow represents L and the bottom horizontal
arrow represents the matrix for L interpreted as a linear map [L] : Fm ! Fn: The
two vertical arrows are the basis isomorphisms de�ned by the choices of bases for
V and W; i.e., �

e1 � � � em
�
: Fm ! V;�

f1 � � � fn
�
: Fn !W:

Thus we have the formulae relating L and [L]

L =
�
f1 � � � fn

�
� [L] �

�
e1 � � � em

��1
;

[L] =
�
f1 � � � fn

��1 � L � � e1 � � � em
�
:

Note that a basis isomorphism�
x1 � � � xm

�
: Fm ! Fm

is a matrix �
x1 � � � xm

�
2 Matm�m (F)

provided we write the vectors x1; :::; xm as column vectors. As such, the map can
be inverted using the standard matrix inverse. That said, it is not an easy problem
to invert matrices or linear maps in general.

It is important to be aware of the fact that di¤erent bases will yield di¤erent
matrix representations. To see what happens abstractly let us assume that we have
two bases x1; :::; xn and y1; :::; yn for a vector space V: If we think of x1; :::; xn as a
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basis for the domain and y1; :::; yn as a basis for the image, then the identity map
1V : V ! V has a matrix representation that is computed via

�
x1 � � � xn

�
=

�
y1 � � � yn

� 264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375
=

�
y1 � � � yn

�
B:

The matrix B; being the matrix representation for an isomorphism, is itself invert-
ible and we see that by multiplying by B�1 on the right we obtain

�
y1 � � � yn

�
=
�
x1 � � � xn

�
B�1:

This is the matrix representation for 1�1V = 1V when we switch the bases around.
Di¤erently stated we have

B =
�
y1 � � � yn

��1 �
x1 � � � xn

�
;

B�1 =
�
x1 � � � xn

��1 �
y1 � � � yn

�
:

We now check what happens to a vector x 2 V

x =
�
x1 � � � xn

� 264 �1
...
�n

375
=

�
y1 � � � yn

� 264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375
264 �1

...
�n

375 :
Thus, if we know the coordinates for x with respect to x1; :::; xn; then we immedi-
ately obtain the coordinates for x with respect to y1; :::; yn by changing264 �1

...
�n

375
to 264 �11 � � � �1n

...
. . .

...
�n1 � � � �nn

375
264 �1

...
�n

375 :
We can evidently also go backwards using the inverse B�1 rather than B:
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Example 24. In F2 let e1; e2 be the standard basis and y1 =
�
1
0

�
; y2 =�

1
1

�
: Then B�11 is easily found using�

1 1
0 1

�
=

�
y1 y2

�
=

�
e1 e2

�
B�11

=

�
1 0
0 1

�
B�11

= B�11

B1 itself requires solving�
e1 e2

�
=

�
y1 y2

�
B1; or�

1 0
0 1

�
=

�
1 1
0 1

�
B1:

Thus

B1 =
�
y1 y2

��1
=

�
1 1
0 1

��1
=

�
1 �1
0 1

�
Example 25. In F2 let x1 =

�
1
�1

�
; x2 =

�
1
1

�
and y1 =

�
1
0

�
; y2 =�

1
1

�
: Then B2 is found by

B2 =
�
y1 y2

��1 �
x1 x2

�
=

�
1 �1
0 1

� �
1 1
�1 1

�
=

�
2 0
�1 1

�
and

B�12 =

�
1
2 0
1
2 1

�
:

Recall that we know �
�
�

�
= �e1 + �e2

=
�� �
2

x1 +
�+ �

2
x2

= (�� �) y1 + �y2:
Thus it should be true that�

(�� �)
�

�
=

�
2 0
�1 1

� �
���
2

�+�
2

�
;
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which indeed is the case.

Now suppose that we have a linear operator L : V ! V: It will have matrix
representations with respect to both bases. First let us do this in a diagram of
maps

Fn A1�! Fn
# #
V

L�! V
" "
Fn A2�! Fn

Here the downward arrows come form the isomorphism�
x1 � � � xn

�
: Fn ! V

and the upward arrows are �
y1 � � � yn

�
: Fn ! V:

Thus

L =
�
x1 � � � xn

�
A1
�
x1 � � � xn

��1
L =

�
y1 � � � yn

�
A2
�
y1 � � � yn

��1
We wish to discover what the relationship between A1 and A2 is. To �gure this out
we simply note that�
x1 � � � xn

�
A1
�
x1 � � � xn

��1
= L

=
�
y1 � � � yn

�
A2
�
y1 � � � yn

��1
:

Hence

A1 =
�
x1 � � � xn

��1 �
y1 � � � yn

�
A2
�
y1 � � � yn

��1 �
x1 � � � xn

�
= B�1A2B:

To memorize this formula keep in mind that B transforms from the x1; :::; xn basis
to the y1; :::; yn basis while B�1 reverses this process. The matrix product B�1A2B
then indicates that starting from the right we have gone from x1; :::; xn to y1; :::; yn
then used A2 on the y1; :::; yn basis and then transformed back from the y1; :::; yn
basis to the x1; :::; xn basis in order to �nd what A1 does with respect to the
x1; :::; xn basis.

Example 26. We have the representations for

L =

�
1 1
0 2

�
with respect to the three bases we just studied earlier in �Linear Maps as Matrices��

L (e1) L (e2)
�
=
�
e1 e2

� � 1 1
0 2

�
;

�
L (x1) L (x2)

�
=
�
x1 x2

� � 1 0
�1 2

�
;

�
L (y1) L (y2)

�
=
�
y1 y2

� � 1 0
0 2

�
:
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Using the changes of basis calculated above we can check the following relationships�
1 0
0 2

�
= B1

�
1 1
0 2

�
B�11

=

�
1 �1
0 1

� �
1 1
0 2

� �
1 1
0 1

�
�
1 0
0 2

�
= B2

�
1 1
0 2

�
B�12

=

�
2 0
�1 1

� �
1 0
�1 2

� �
1
2 0
1
2 1

�
One can more generally consider L : V ! W and see what happens if we

change bases in both V and W: The analysis is similar as long as we keep in mind
that there are four bases in play. The key diagram evidently looks like

Fm A1�! Fn
# #
V

L�! W
" "
Fm A2�! Fn

One of the goals in the study of linear operators or just square matrices is to
�nd a suitable basis that makes the matrix representation as simple as possible.
This is a rather complicated theory which the rest of the book will try to uncover.

9.1. Exercises.

(1) Let V = f� cos (t) + � sin (t) : �; � 2 Cg :
(a) Show that cos (t) ; sin (t) and exp (it) ; exp (�it) both form a basis for

V:
(b) Find the change of basis matrix.
(c) Find the matrix representation of D : V ! V with respect to both

bases and check that the change of basis matrix gives the correct
relationship between these two matrices.

(2) Let

A =

�
0 �1
1 0

�
: R2 ! R2

and consider the basis

x1 =

�
1
�1

�
; x2 =

�
1
1

�
:

(a) Compute the matrix representation of A with respect to x1; x2:
(b) Compute the matrix representation of A with respect to 1p

2
x1;

1p
2
x2:

(c) Compute the matrix representation of A with respect to x1; x1+ x2:
(3) Let e1; e2 be the standard basis for C2 and consider the two real bases e1;

e2; ie1; ie2 and e1; ie1; e2; ie2: If � = �+ i� is a complex number compute
the real matrix representations for �1C2 with respect to both bases. Show
that the two matrices are related via the change of basis formula.
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(4) If x1; :::; xn is a basis for V; then what is the change of basis matrix from
x1; :::; xn to xn; :::; x1? How does the matrix representation of an operator
on V change with this change of basis?

(5) Let L : V ! V be a linear operator, p (t) 2 F [t] a polynomial and
K : V !W an isomorphism. Show that

p
�
K � L �K�1� = K � p (L) �K�1:

(6) Let A be a permutation matrix. Will the matrix representation for A still
be a permutation matrix in a di¤erent basis?

(7) What happens to the matrix representation of a linear map if the change
of basis matrix is a permutation matrix?

10. Subspaces

A nonempty subset M � V of a vector space V is said to be a subspace if it is
closed under addition and scalar multiplication:

x; y 2M =) x+ y 2M;

� 2 F and x 2M =) �x 2M

Note that since M 6= ; we can �nd x 2M , this means that 0 = 0 � x 2M: It is
clear that subspaces become vector spaces in their own right and this without any
further checking of the axioms.

The two properties for a subspace can be combined into one property as follows

�1; �2 2 F and x1; x2 2M =) �1x1 + �2x2 2M

Any vector space always has two trivial subspaces, namely, V and f0g : Some
more interesting examples come below.

Example 27. Let Mi be the ith coordinate axis in Fn; i.e., the set consisting
of the vectors where all but the ith coordinate are zero. Thus

Mi = f(0; :::; 0; �i; 0; :::; 0) : �i 2 Fg :

Example 28. Polynomials in F [t] of degree � n form a subspace denoted Pn.

Example 29. Continuous functions C0 ([a; b] ;R) on an interval [a; b] � R is
evidently a subspace of Func ([a; b] ;R) : Likewise the space of functions that have
derivatives of all orders is a subspace

C1 ([a; b] ;R) � C0 ([a; b] ;R) :

If we regard polynomials as functions on [a; b] then we have that

R [t] � C1 ([a; b] ;R) :

Example 30. Solutions to simple types of equations often form subspaces:�
3�1 � 2�2 + �3 = 0 : (�1; �2; �3) 2 F3

	
:

However something like�
3�1 � 2�2 + �3 = 1 : (�1; �2; �3) 2 F3

	
does not yield a subspace as it doesn�t contain the origin.
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Example 31. There are other interesting examples of subspaces of C1 (R;C) :
If ! > 0 is some �xed number then we consider

C1! (R;C) = ff 2 C1 (R;C) : f (t) = f (t+ !) for all t 2 Rg :
These are the periodic functions with period !: Note that

f (t) = exp (i2�t=!)

= cos (2�t=!) + i sin (2�t=!)

is an example of a periodic function.

Subspaces allow for a generalized type of calculus. That is, we can �add�
and �multiply� them to form other subspaces. However, it isn�t possible to �nd
inverses for either operation. IfM;N � V are subspaces then we can form two new
subspaces, the sum and the intersection:

M +N = fx+ y : x 2M and y 2 Ng ;
M \N = fx : x 2M and x 2 Ng :

It is certainly true that both of these sets contain the origin. The intersection is
most easily seen to be a subspace so let us check the sum. If � 2 F and x 2 M;
y 2 N; then we have �x 2M , �y 2 N so

�x+ �y = � (x+ y) 2M +N:

In this way we see that M +N is closed under scalar multiplication. To check that
it is closed under addition is equally simple.

We can think of M + N as addition of subspaces and M \ N as a kind of
multiplication. The element that acts as zero for addition is the trivial subspace
f0g asM+f0g =M; whileM\V =M implies that V is the identity for intersection.
Beyond this, it is probably not that useful to think of these subspace operations as
arithmetic operations, e.g, the distributive law does not hold.

If S � V is a subset of a vector space, then the span of S is de�ned as

span (S) =
\

S�M�V
M;

where M � V is always a subspace of V: Thus the span is the intersection of all
subspaces that contain S: This is a subspace of V and must in fact be the smallest
subspace containing S: We immediately get the following elementary properties.

Proposition 2. Let V be a vector space and S; T � V subsets.
(1) If S � T , then span (S) � span (T ) :
(2) If M � V is a subspace, then span (M) =M:
(3) span (span (S)) = span (S) :
(4) span (S) = span (T ) if and only if S � span (T ) and T � span (S) :

Proof. The �rst property is obvious from the de�nition of span.
To prove the second property we �rst note that we always have that S �

span (S) : In particular M � span (M) : On the other hand as M is a subspace that
contains M it must also follow that span (M) �M:

The third property follows from the second as span (S) is a subspace.
To prove the �nal property we �rst observe that if span (S) � span (T ) ; then

S � span (T ) : Thus it is clear that if span (S) = span (T ), then S � span (T )
and T � span (S) : Conversely we have from the �rst and third properties that
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if S � span (T ) ; then span (S) � span (span (T )) = span (T ) : This shows that if
S � span (T ) and T � span (S) ; then span (S) = span (T ) : �

The following lemma gives an alternate and very convenient description of the
span.

Lemma 6. (Characterization of span (M) ) Let S � V be a nonempty subset
of M: Then span (S) consists of all linear combinations of vectors in S:

Proof. Let C be the set of all linear combinations of vectors in S: Since
span (S) is a subspace it must be true that C � span (S) : Conversely if x; y 2 C;
then we note that also �x + �y is a linear combination of vectors from S: Thus
�x+ �y 2 C and hence C is a subspace. This means that span (S) � C: �

We say thatM andN have trivial intersection providedM\N = f0g ; i.e., their
intersection is the trivial subspace. We say that M and N are transversal provided
M + N = V: Both concepts are important in di¤erent ways. Transversality also
plays a very important role in the more advanced subject of di¤erentiable topology.
Di¤erentiable topology is the study of maps and spaces through a careful analysis
of di¤erentiable functions.

If we combine the two concepts of transversality and trivial intersection we
arrive at another important idea. Two subspaces are said to be complementary if
they are transversal and have trivial intersection.

Lemma 7. Two subspaces M;N � V are complementary if and only if each
vector z 2 V can be written as z = x+ y, where x 2M and y 2 N in one and only
one way.

Before embarking on the proof let us explain the use of �one and only one�.
The idea is �rst that z can be written like that in (at least) one way, the second
part is that this is the only way in which to do it. In other words having found x
and y so that z = x + y there can�t be any other ways in which to decompose z
into a sum of elements from M and N:

Proof. First assume that M and N are complementary. Since V = M + N
we know that z = x+ y for some x 2M and y 2 N: If we have

x1 + y1 = z = x2 + y2

where x1; x2 2 M and y1; y2 2 N; then by moving each of x2 and y1 to the other
side we get

M 3 x1 � x2 = y2 � y1 2 N:
This means that

x1 � x2 = y2 � y1 2M \N = f0g
and hence that

x1 � x2 = y2 � y1 = 0:
Thus x1 = x2 and y1 = y2 and we have established that z has the desired unique
decomposition.

Conversely assume that any z = x + y; for unique x 2 M and y 2 N . First
we see that this means V = M + N: To see that M \ N = f0g we simply select
z 2 M \N: Then z = z + 0 = 0 + z where z 2 M; 0 2 N and 0 2 M; z 2 N: Since
such decompositions are assumed to be unique we must have that z = 0 and hence
M \N = f0g : �
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When we have two complementary subsets M;N � V we also say that V is a
direct sum of M and N and we write this symbolically as V =M �N: The special
sum symbol indicates that indeed V = M + N and also that the two subspaces
have trivial intersection. Using what we have learned so far about subspaces we get
a result that is often quite useful.

Corollary 3. Let M;N � V be subspaces. If M \N = f0g ; then

M +N =M �N

and

dim (M +N) = dim (M) + dim (N)

We also have direct sum decompositions for more than two subspaces. If
M1; :::;Mk � V are subspaces we say that V is a direct sum of M1; :::;Mk and
write

V =M1 � � � � �Mk

provided any vector z 2 V can be decomposed as

z = x1 + � � �+ xk;
x1 2 M1; :::; xk 2Mk

in one and only one way.
Here are some examples of direct sums.

Example 32. The prototypical example of a direct sum comes from the plane.
Where V = R2 and

M = f(x; 0) : x 2 Rg
is the 1st coordinate axis and

N = f(0; y) : y 2 Rg

the 2nd coordinate axis.

Example 33. Direct sum decompositions are by no means unique, as can be
seen using V = R2 and

M = f(x; 0) : x 2 Rg
and

N = f(y; y) : y 2 Rg
the diagonal. We can easily visualize and prove that the intersection is trivial. As
for transversality just observe that

(x; y) = (x� y; 0) + (y; y) :

Example 34. We also have the direct sum decomposition

Fn =M1 � � � � �Mn;

where

Mi = f(0; :::; 0; �i; 0; :::; 0) : �i 2 Fg :
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Example 35. Here is a more abstract example that imitates the �rst. Partition
the set

f1; 2; :::; ng = fi1; :::; ikg [ fj1; :::; jn�kg
into two complementary sets. Let

V = Fn;
M =

�
(�1; :::; �n) 2 Fn : �j1 = � � � = �jn�k = 0

	
;

N = f(�1; :::; �n) : �i1 = � � � = �ik = 0g :
Thus

M = Mi1 � � � � �Mik ;

N = Mj1 � � � � �Mjn�k ;

and Fn = M � N: Note that M is isomorphic to Fk and N to Fn�k; but with
di¤erent indices for the axes. Thus we have the more or less obvious decomposition:
Fn = Fk�Fn�k: Note, however, that when we use Fk rather thanM we do not think
of Fk as a subspace of Fn as vectors in Fk are k-tuples of the form (�i1 ; :::; �ik) :
Thus there is a subtle di¤erence between writing Fn as a product or direct sum.

Example 36. Another very interesting decomposition is that of separating func-
tions into odd and even parts. Recall that a function f : R ! R is said to be odd,
respectively even, if f (�t) = �f (t) ; respectively f (�t) = f (t) : Note that con-
stant functions are even, while functions whose graphs are lines through the origin
are odd. We denote the subsets of odd and even functions by Funcodd (R;R) and
Funcev (R;R) : It is easily seen that these subsets are subspaces. Also Funcodd (R;R)\
Funcev (R;R) = f0g since only the zero function can be both odd and even. Finally
any f 2 Func (R;R) can be decomposed as follows

f (t) = fev (t) + fodd (t) ;

fev (t) =
f (t) + f (�t)

2
;

fodd (t) =
f (t)� f (�t)

2
:

A speci�c example of such a decomposition is

et = cosh (t) + sinh (t) ;

cosh (t) =
et + e�t

2
;

sinh (t) =
et � e�t
2

:

If we consider complex valued functions Func (R;C) we still have the same concepts
of even and odd and also the desired direct sum decomposition. Here, another
similar and very interesting decomposition is the Euler formula

eit = cos (t) + i sin (t)

cos (t) =
eit + e�it

2
;

sin (t) =
eit � e�it

2i
:



10. SUBSPACES 47

Some interesting questions come to mind with the de�nitions encountered here.
What is the relationship between dimFM and dimF V for a subspace M � V ? Do
all subspaces have a complement? Are there some relationships between subspaces
and linear maps?

At this point we can show that subspaces of �nite dimensional vector spaces
do have complements. This result will be used to prove several other important
theorems in the chapter.

Theorem 2. (Existence of Complements) LetM � V be a subspace and assume
that V = span fx1; :::; xng : If M 6= V; then it is possible to choose xi1 ; ::::; xik such
that

V =M � span fxi1 ; :::; xikg

Proof. Successively choose xi1 ; :::; xik such that

xi1 =2 M;

xi2 =2 M + span fxi1g ;
...

xik =2 M + span
�
xi1 ; :::; xik�1

	
:

This process can be continued until

V =M + span fxi1 ; ::::; xikg
and since

span fx1; :::; xng = V

we know that this will happen for some k � n: It now only remains to be seen that
f0g =M \ span fxi1 ; ::::; xikg :

To check this suppose that

x 2M \ span fxi1 ; ::::; xikg
and write

x = �i1xi1 + � � �+ �ikxik 2M:

If �i1 = � � � = �ik = 0; there is nothing to worry about. Otherwise we can �nd the
largest l so that �il 6= 0: Then

1

�il
x =

�i1
�il

xi1 + � � �+
�il�1
�il

xil�1 + xil 2M

which implies the contradictory statement that

xil 2M + span
�
xi1 ; :::; xil�1

	
:

�

This theorem shows that dim (M) � dim (V ) as long as we know that both M
and V are �nite dimensional. To see this, �rst select a basis y1; :::; yl for M and
then xi1 ; :::; xik as a basis for a complement to M using a basis x1; :::; xn for V:
Putting these two bases together will then yield a basis y1; :::; yl; xi1 ; :::; xik for
V: Thus l + k = dim (V ) ; which shows that l = dim (M) � dim (V ) : Thus the
important point lies in showing that M is �nite dimensional. We will establish this
in the next section.
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10.1. Exercises.
(1) Show that

S =
�
L : R3 ! R2 : L (1; 2; 3) = 0; (2; 3) = L (x) for some x 2 R2

	
is not a subspace of hom

�
R3;R2

�
: How many linear maps are there in S?

(2) Find a one dimensional complex subspace M � C2 such that R2 \M =
f0g :

(3) Let L : V !W be a linear map and N �W a subspace. Show that

L�1 (N) = fx 2 V : L (x) 2 Ng
is a subspace of V:

(4) Is it true that subspaces satisfy the distributive law

M \ (N1 +N2) =M \N1 +M \N2?
(5) Show that if V is �nite dimensional, then hom (V; V ) is a direct sum of

the two subspaces M = span f1V g and N = fL : trL = 0g :
(6) Show that Matn�n (R) is the direct sum of the following three subspaces

(you also have to show that they are subspaces)

I = span f1Rng ;
S0 =

�
A : trA = 0 and At = A

	
;

A =
�
A : At = �A

	
:

(7) Let M1; :::;Mk  V be proper subspaces of a �nite dimensional vector
space and N � V a subspace. Show that if N � M1 [ � � � [Mk; then
N � Mi for some i: Conclude that if N is not contained in any of the
Mis, then we can �nd x 2 N such that x =2M1; :::; x =2Mk:

(8) Assume that V = N �M and that x1; :::; xk form a basis for M while
xk+1; :::; xn form a basis for N: Show that x1; :::; xn is a basis for V:

(9) An a¢ ne subspace A � V of a vector space is a subspace such that a¢ ne
linear combinations of vectors in A lie in A; i.e., if �1 + � � �+ �n = 1 and
x1; :::; xn 2 A; then �1x1 + � � �+ �nxn 2 A:
(a) Show that A is an a¢ ne subspace if and only if there is a point x0 2 V

and a subspace M � V such that

A = x0 +M = fx0 + x : x 2Mg :
(b) Show that A is an a¢ ne subspace if and only if there is a subspace

M � V with the properties: 1) if x; y 2 A; then x� y 2M and 2) if
x 2 A and z 2M; then x+ z 2 A:

(c) Show that the subspaces constructed in parts a. and b. are equal.
(d) Show that the set of monic polynomials of degree n in Pn; i.e., the

coe¢ cient in front of tn is 1; is an a¢ ne subspace with M = Pn�1:
(10) Show that the two spaces below are subspaces of C12� (R;R) that are not

equal to each other

V1 = fb1 sin (t) + b2 sin (2t) + b3 sin (3t) : b1; b2; b3 2 Rg ;
V2 =

�
b1 sin (t) + b2 sin

2 (t) + b3 sin
3 (t) : b1; b2; b3 2 R

	
:

(11) Let T � C12� (R;C) be the space of complex trigonometric polynomials,
i.e., the space of functions of the form

a0 + a1 cos t+ � � �+ ak cosk t+ b1 sin t+ � � �+ bk sink t;
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where a0; :::; ak; b1; :::; bk 2 C:
(a) Show that T is also equal to the space of functions of the form

�0 + �1 cos t+ � � �+ �k cos (kt) + �1 sin t+ � � �+ �k sin (kt)

where �0; :::; �k; �1; :::; �k 2 C:
(b) Show that T is also equal to the space of function of the form

c�k exp (�ikt) + � � �+ c�1 exp (�it) + c0 + c1 exp (it) + � � �+ ck exp (ikt) ;

where c�k; :::; ck 2 C:
(12) If M � V and N � W are subspaces, then M � N � V �W is also a

subspace.
(13) If A 2 Matn�n (F) has tr (A) = 0; show that

A = A1B1 �B1A1 + � � �+AmBm �BmAm
for suitable Ai; Bi 2 Matn�n (F) : Hint: Show that

M = span fXY � Y X : X;Y 2 Matn�n (F)g

has dimension n2 � 1 by exhibiting a suitable basis.
(14) Let L : V !W be a linear map and consider the graph

GL = f(x; L (x)) : x 2 V g � V �W:

(a) Show that GL is a subspace.
(b) Show that the map V ! GL that sends x to (x; L (x)) is an isomor-

phism.
(c) Show that L is one-to-one if and only if the projection PW : V �W !

W is one-to-one when restricted to GL:
(d) Show that L is onto if and only if the projection PW : V �W ! W

is onto when restricted to GL:
(e) Show that a subspace N � V � W is the graph of a linear map

K : V ! W if and only if the projection PV : V �W ! V is an
isomorphism when restricted to N:

(f) Show that a subspace N � V � W is the graph of a linear map
K : V !W if and only if V �W = N � (f0g �W ) :

11. Linear Maps and Subspaces

Linear maps generate a lot of interesting subspaces and can also be used to
understand certain important aspects of subspaces. Conversely the subspaces as-
sociated to a linear map give us crucial information as to whether the map is
one-to-one or onto.

Let L : V !W be a linear map between vector spaces. The kernel or nullspace
of L is

ker (L) = N (L) = fx 2 V : L (x) = 0g = L�1 (0) :

The image or range of L is

im (L) = R (L) = L (V ) = fy 2W : y = L (x) for some x 2 V g :

Both of these spaces are subspaces.

Lemma 8. ker (L) is a subspace of V and im (L) is a subspace of W:
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Proof. Assume that �1; �2 2 F and that x1; x2 2 ker (L) ; then

L (�1x1 + �2x2) = �1L (x1) + �2L (x2) = 0:

More generally, if we only assume x1; x2 2 V; then we have

�1L (x1) + �2L (x2) = L (�1x1 + �2x2) 2 im (L) :

This proves the claim. �

The same proof shows that L (M) = fL (x) : x 2Mg is a subspace of W when
M is a subspace of V:

Lemma 9. L is one-to-one if and only if ker (L) = f0g :

Proof. We know that L (0 � 0) = 0�L (0) = 0; so if L is one-to-one we have that
L (x) = 0 = L (0) implies that x = 0: Hence ker (L) = f0g : Conversely assume that
ker (L) = f0g : If L (x1) = L (x2) ; then linearity of L tells us that L (x1 � x2) = 0:
Then ker (L) = f0g implies x1 � x2 = 0; which shows that x1 = x2. �

If we have a direct sum decomposition V =M�N; then we can construct what
is called the projection of V onto M along N: The map E : V ! V is de�ned as
follows. For z 2 V we write z = x+ y for unique x 2M; y 2 N and de�ne

E (z) = x:

Thus im (E) =M and ker (E) = N: Note that

(1V � E) (z) = z � x = y:

This means that 1V �E is the projection of V ontoN alongM: So the decomposition
V = M � N; gives us similar decomposition of 1V using these two projections:
1V = E + (1V � E) :

Using all of the examples of direct sum decompositions we get several examples
of projections. Note that each projection E onto M leads in a natural way to a
linear map P : V ! M: This map has the same de�nition P (z) = P (x+ y) = x,
but it is not E as it is not de�ned as an operator V ! V . It is perhaps pedantic
to insist on having di¤erent names but note that as it stands we are not allowed to
compose P with itself as it doesn�t map into V:

We are now ready to establish several extremely important results relating
linear maps, subspaces and dimensions.

Recall that complements to a �xed subspace are usually not unique, however,
they do have the same dimension as the next result shows.

Lemma 10. (Uniqueness of Complements) If V =M1�N =M2�N; then M1

and M2 are isomorphic.

Proof. Let P : V ! M2 be the projection whose kernel is N: We contend
that the map P jM1

:M1 !M2 is an isomorphism. The kernel can be computed as

ker (P jM1
) = fx 2M1 : P (x) = 0g
= fx 2 V1 : P (x) = 0g \M1

= N \M1

= f0g :
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To check that the map is onto select x2 2 M2: Next write x2 = x1 + y1, where
x1 2M1 and y1 2 N: Then

x2 = P (x2)

= P (x1 + y1)

= P (x1) + P (y1)

= P (x1)

= P jM1 (x1) :

This establishes the claim. �

Theorem 3. (The Subspace Theorem) Assume that V is �nite dimensional
and that M � V is a subspace. Then M is �nite dimensional and

dimFM � dimF V:
Moreover if V =M �N; then

dimF V = dimFM + dimFN:

Proof. If M = V we are �nished. Otherwise select a basis x1; :::; xm for V:
Then after using the basis to extract a complement to M in V we have that

V = M � span fxi1 ; :::; xikg ;
V = span fxj1 ; :::; xjlg � span fxi1 ; :::; xikg ;

where k + l = m and

f1; :::; ng = fj1; :::; jlg [ fi1; :::; ikg :
The previous result then shows thatM and span fxj1 ; :::; xjlg are isomorphic. Thus

dimFM = l < m:

In addition we see that if V =M �N; then the previous result also shows that
dimFN = k:

This proves the theorem. �

Theorem 4. (The Dimension Formula) Let V be �nite dimensional and L :
V !W a linear map, then im (L) is �nite dimensional and

dimF V = dimF ker (L) + dimF im (L) :

Proof. We know that dimF ker (L) � dimF V and that it has a complement
N � V of dimension k = dimF V �dimF ker (L) : Since N \ ker (L) = f0g the linear
map L must be one-to-one when restricted to N: Thus LjN : N ! im (L) is an
isomorphism. This proves the theorem. �

The number nullity (L) = dimF ker (L) is called the nullity of L and rank (L) =
dimF im (L) is known as the rank of L:

Corollary 4. If M is a subspace of V and dimFM = dimF V = n <1; then
M = V:

Proof. If M 6= V there must be a complement of dimension > 0: This gives
us a contradiction with The Subspace Theorem. �



52 1. BASIC THEORY

Corollary 5. Assume that L : V ! W and dimF V = dimFW = n < 1:
Then L is an isomorphism if either nullity (L) = 0 or rank (L) = n:

Proof. The dimension theorem shows that if either nullity(L) = 0 or rank (L) =
n; then also rank (L) = n or nullity(L) = 0: Thus showing that L is an isomor-
phism. �

Knowing that the vector spaces are abstractly isomorphic can therefore help us
in checking when a given linear map might be an isomorphism.

Many of these results are not true in in�nite dimensional spaces. The di¤eren-
tiation operator D : C1 (R;R)! C1 (R;R) is onto and has a kernel consisting of
all constant functions. The multiplication operator T : C1 (R;R)! C1 (R;R) on
the other hand is one-to-one but is not onto as T (f) (0) = 0 for all f 2 C1 (R;R) :

Corollary 6. If L : V !W is a linear map between �nite dimensional spaces,
then we can �nd bases e1; :::; em for V and f1; :::; fn for W so that

L (e1) = f1;

...

L (ek) = fk;

L (ek+1) = 0;

...

L (em) = 0;

where k = rank (L) :

Proof. Simply decompose V = ker (L)�M: Then choose a basis e1; :::; ek for
M and a basis ek+1; :::; em for ker (L) : Combining these two bases gives us a basis
for V: Then de�ne f1 = L (e1) ; :::; fk = L (ek). Since LjM : M ! im (L) is an
isomorphism this implies that f1; :::; fk form a basis for im (L) : We then get the
desired basis for W by letting fk+1; :::; fn be a basis for a complement to im (L) in
W . �

While this certainly gives the nicest possible matrix representation for L it isn�t
very useful. The complete freedom one has in the choice of both bases somehow also
means that aside from the rank no other information is encoded in the matrix. The
real goal will be to �nd the best matrix for a linear operator L : V ! V with respect
to one basis. In the general situation L : V ! W we will have something more to
say in case V and W are inner product spaces and the bases are orthonormal.

Finally it is worth mentioning that projections as a class of linear operators on
V can be characterized in a surprisingly simple manner.

Theorem 5. (Characterization of Projections) Projections all satisfy the func-
tional relationship E2 = E: Conversely any E : V ! V that satis�es E2 = E is a
projection.

Proof. First assume that E is the prjection onto M along N coming from
V =M �N: If z = x+ y 2M �N; then

E2 (z) = E (E (z))

= E (x)

= E (z) :
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Conversely assume that E2 = E; then E (x) = x provided x 2 im (E) : Thus we
have

im (E) \ ker (E) = f0g ; and
im (E) + ker (E) = im (E)� ker (E)

From The Dimension Theorem we also have that

dim (im (E)) + dim (ker (E)) = dim (V ) :

This shows that im (E)+ker (E) is a subspace of dimension dim (V ) and hence
all of V: Finally if we write z = x+y, x 2 im (E) and y 2 ker (E) ; then E (x+ y) =
E (x) = x; so E is the projection onto im (E) along ker (E) : �

In this way we have shown that there is a natural identi�cation between direct
sum decompositions and projections, i.e., maps satisfying E2 = E:

11.1. Exercises.
(1) Let L;K : V ! V satisfy L �K = 1V :

(a) If V is �nite dimensional, then K � L = 1V :
(b) If V is in�nite dimensional give an example where K � L 6= 1V :

(2) LetM � V be a k-dimensional subspace of an n-dimensional vector space.
Show that any isomorphism L : M ! Fk can be extended to an isomor-
phism L̂ : V ! Fn; such that L̂jM = L: Here we have identi�ed Fk with
the subspace in Fn where the last n� k coordinates are zero.

(3) Let L : V !W be a linear map.
(a) If L has rank k show that it can be factored through Fk; i.e., we can

�nd K1 : V ! Fk and K2 : Fk !W such that L = K2K1:
(b) Show that any matrix A 2 Matn�m (F) of rank k can be factored

A = BC; where B 2 Matn�k (F) and C 2 Matk�m (F) :
(c) Conclude that any rank 1 matrix A 2 Matn�m (F) looks like

A =

264 �1
...
�n

375 � �1 � � � �m
�
:

(4) If L1 : V1 ! V2 and L2 : V2 ! V3 are linear show.
(a) im (L2 � L1) � im (L2) : In particular, if L2 �L1 is onto then so is L2:
(b) ker (L1) � ker (L2 � L1) : In particular, if L2 � L1 is one-to-one then

so is L1:
(c) Give an example where L2 �L1 is an isomorphism but L1 and L2 are

not.
(d) What happens in c. if we assume that the vector spaces all have the

same dimension?
(e) Show that

rank (L1) + rank (L2)� dim (V2) � rank (L2 � L1)
� min frank (L1) ; rank (L2)g :

(f) Show that

max fdim (kerL1) ;dim (kerL2)g � dim (kerL2 � L1)
� dim (kerL1) + dim (kerL2)
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(5) Let L : V ! V be a linear operator on a �nite dimensional vector space.
(a) Show that L = �1V if and only if L (x) 2 span fxg for all x 2 V:
(b) Show that L = �1V if and only if L � K = K � L for all K 2

hom (V; V ) :
(c) Show that L = �1V if and only if L�K = K �L for all isomorphisms

K : V ! V:
(6) Show that two 2-dimensional subspaces of a 3-dimensional vector space

must have a nontrivial intersection.
(7) (Dimension formula for subspaces) Let M1;M2 � V be subspaces of a

�nite dimensional vector space. Show that

dim (M1 \M2) + dim (M1 +M2) = dim (M1) + dim (M2) :

Conclude that if M1 and M2 are transverse then M1 \M2 has the �ex-
pected�dimension (dim (M1) + dim (M2))� dimV: Hint: Use the dimen-
sion formula on the linear map L :M1 �M2 ! V de�ned by L (x1; x2) =
x1�x2: Alternatively select a suitable basis for M1+M2 by starting with
a basis for M1 \M2:

(8) Let M � V be a subspace. Show that the subset of homF (V;W ) con-
sisting of maps that vanish on M is a subspace of dimension dimFW �
(dimF V � dimFM) :

(9) Let M1;M2 � V be subspaces of a �nite dimensional vector space.
(a) If M1 \ M2 = f0g and dim (M1) + dim (M2) � dimV; then V =

M1 �M2:
(b) If M1 + M2 = V and dim (M1) + dim (M2) � dimV; then V =

M1 �M2:
(10) Let A 2 Matn�l (F) and consider LA : Matl�m (F)! Matn�m (F) de�ned

by LA (X) = AX: Find the kernel and image of this map.
(11) Let

0
L0! V1

L1! V2
L2! � � � Ln�1! Vn

Ln! 0

be a sequence of linear maps such that im (Li) � ker (Li+1) for i =
0; 1; :::; n� 1: Note that L0 and Ln are both the trivial linear maps with
image f0g : Show that
nX
i=1

(�1)i dimVi =
nX
i=1

(�1)i (dim (ker (Li))� dim (im (Li�1))) :

Hint: First try the case where n = 2:
(12) Show that the matrix �

0 1
0 0

�
as a linear map satis�es ker (L) = im (L) :

(13) Show that �
0 0
� 1

�
de�nes a projection for all � 2 F: Compute the kernel and image.

(14) For any integer n > 1 give examples of linear maps L : Cn ! Cn such
that
(a) Cn = ker (L)� im (L) is a nontrivial direct sum decomposition.
(b) f0g 6= ker (L) � im (L) :
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(15) For Pn � R [t] and 2 (n+ 1) points a0 < b0 < a1 < b1 < � � � < an < bn
consider the map L : Pn ! Rn+1 de�ned by

L (p) =

2664
1

b0�a0

R b0
a0
p (t) dt

...
1

bn�an

R bn
an
p (t) dt

3775 :
Show that L is a linear isomorphism.

12. Linear Independence

In this section we shall �nally study the concepts of linear dependence and
independence as well as how they tie in with kernels and images of linear maps.

Assume that L : Fm ! V is the linear map de�ned by
�
x1 � � � xm

�
:

We say that x1; :::; xm are linearly independent if ker (L) = f0g : In other words
x1; :::; xm are linearly independent if

x1�1 + � � �+ xm�m = 0
implies that

�1 = � � � = �m = 0:

The image of the map L can be identi�ed with span fx1; :::; xmg and is described
as

fx1�1 + � � �+ xm�m : �1; :::; �m 2 Fg :
Note that x1; :::; xm is a basis precisely when ker (L) = f0g and span fx1; :::; xmg =
V: The notions of kernel and image therefore enter our investigations of dimension
in a very natural way. Finally we say that x1; :::; xm are linearly dependent if they
are not linearly independent, i.e., we can �nd �1; :::; �m 2 F not all zero so that
x1�1+� � �+xm�m = 0: In the next section we shall see how Gauss elimination helps
us decide when a selection of vectors in Fn is linearly dependent or independent.

We give here a characterization of linear dependence that is quite useful in both
concrete and abstract situations.

Lemma 11. (Characterization of Linear Dependence) Let x1; ::::; xn 2 V: Then
x1; :::; xn is linearly dependent if and only if either x1 = 0; or we can �nd a smallest
k � 2 such that xk is a linear combination of x1; :::; xk�1:

Proof. First observe that if x1 = 0; then 1x1 = 0 is a nontrivial linear com-
bination. Next if

xk = �1x1 + � � �+ �k�1xk�1;
then we also have a nontrivial linear combination

�1x1 + � � �+ �k�1xk�1 + (�1)xk = 0:
Conversely, assume that x1; :::; xn are linearly dependent. Select a nontrivial linear
combination such that

�1x1 + � � �+ �nxn = 0:
Then we can pick k so that �k 6= 0 and �k+1 = � � � = �n = 0: If k = 1; then we
must have x1 = 0 and we are �nished. Otherwise

xk = �
�1
�k
x1 � � � � �

�k�1
�k

xk�1:
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Thus the set of ks with the property that xk is a linear combination of x1; :::; xk�1
is a nonempty set that contains some integer � 2: Now simply select the smallest
integer in this set to get the desired choice for k: �

This immediately leads us to the following criterion for linear independence.

Corollary 7. (Characterization of Linear Independence) Let x1; ::::; xn 2 V:
Then x1; :::; xn is linearly independent if and only if x1 6= 0 and for each k � 2 we
have

xk =2 span fx1; :::; xk�1g :

Example 37. Let A 2 Matn�n (F) be an upper triangular matrix with k
nonzero entries on the diagonal. We claim that the rank of A is � k: Select the k
column vectors x1; :::; xk that correspond to the nonzero diagonal entries from left
to right. Thus x1 6= 0 and

xl =2 span fx1; :::; xl�1g

since xl has a nonzero entry that lies below all of the nonzero entries for x1; :::; xl�1:
Using the dimension formula we see that dim (ker (A)) � n� k.

It is possible for A to have rank > k: Consider, e.g.,

A =

24 1 0 0
0 0 1
0 0 0

35
This matrix has rank 2, but only one nonzero entry on the diagonal.

Recall from �Subspaces� that we can choose complements to a subspace by
selecting appropriate vectors from a set that spans the vector space.

Corollary 8. If V = span fx1; :::; xng ; then we can select

xi1 ; :::; xik 2 fx1; :::; xng

forming a basis for V:

Proof. We use M = f0g and select xi1 ; :::; xik such that

xi1 6= 0;

xi2 =2 span fxi1g ;
...

xik =2 span
�
xi1 ; :::; xik�1

	
;

V = span fxi1 ; :::; xikg :

The previous corollary then shows that xi1 ; :::; xik are linearly independent. �

A more traditional method for establishing that all bases for a vector space
have the same number of elements is based on the following classical result, often
called simply the Replacement Theorem.

Theorem 6. (Steinitz Replacement) Let y1; :::; ym 2 V be linearly independent
and V = span fx1; :::; xng : Then m � n and V has a basis of the form y1; :::; ym;
xi1 ; :::; xil where l � n�m:
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Proof. First observe that we know we can �nd xi1 ; :::; xil such that span fxi1 ; :::; xilg
is a complement to M = span fy1; :::; ymg : Thus y1; :::; ym; xi1 ; :::; xil must form
a basis for V:

The fact that m � dim (V ) follows from the Subspace Theorem and that n �
dim (V ) from the above result. This also shows that l � n�m:

It is, however, possible to give a more direct argument that does not use the
Subspace Theorem. Instead we use a simple algorithm and the proof of the above
corollary.

Observe that y1; x1; :::; xn are linearly dependent as y1 is a linear combination
of x1; :::; xn. As y1 6= 0 this shows that some xi is a linear combination of the
previous vectors. Thus also

span fy1; x1; :::; xi�1; xi+1; :::; xng = V:

Now repeat the argument with y2 in place of y1 and y1; x1; :::; xi�1; xi+1; :::; xn
in place of x1; :::; xn: Thus

y2; y1; x1; :::; xi�1; xi+1; :::; xn

is linearly dependent and since y2; y1 are linearly independent some xj is a linear
combination of the previous vectors. Continuing in this fashion we get a set of n
vectors

ym; :::; y1; xj1 ; :::xjn�m

that spans V: Finally we can use the above corollary to eliminate vectors to obtain
a basis. Since ym; :::; y1 are linearly independent we can do this by just trowing
away vectors from xj1 ; :::; xjn�m : �

This theorem leads us to a new proof of the fact that any two bases must contain
the same number of elements. It also shows that a linearly independent collection
of vectors contains fewer vectors than a basis, while a spanning set contains more
elements than a basis.

Finally we can prove a remarkable threom for matrices, that we shall revisit
many more times in this text.. The column rank of a matrix is the dimension of
the column space, i.e., the space spanned by the column vectors. In other words,
it is the maximal number of linearly independent column vectors. This is also the
dimension of the image of the matrix viewed as a linear map. Similarly the row
rank is the dimension of the row space, i.e., the space spanned by the row vectors.
This is the dimension of the image of the transposed matrix.

Theorem 7. (The Rank Theorem) Any n � m matrix has the property that
the row rank is equal to the column rank.

Proof. Let A 2 Matn�m (F) and x1; :::; xr 2 Fn be a basis for the column
space of A. Next write the columns of A as linear combinations of this basis

A =
�
x1 � � � xr

� 24 �11 �1m

�r1 �rm

35
=

�
x1 � � � xr

�
B

By taking transposes we see that

At = Bt
�
x1 � � � xr

�t
:
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But this shows that the columns of At; i.e., the rows of A; are linear combinations
of the r vectors that form the columns of Bt264 �11

...
�1m

375 ; :::;
264 �r1

...
�rm

375
Thus the row space is spanned by r vectors. This shows that there can�t be more
than r linearly independent rows.

A similar argument shows that the reverse inequality also holds. �

There is a very interesting example associated to the rank theorem..

Example 38. Let t1; :::; tn 2 F be distinct. We claim that the vectors26664
1
t1
...

tn�11

37775 ; :::;
26664

1
tn
...

tn�1n

37775
are a basis for Fn: To show this we have to show that the rank of the corresponding
matrix 26664

1 1 � � � 1
t1 t2 tn
...

...
tn�11 tn�12 � � � tn�1n

37775
is n: The simplest way to do this is by considering the row rank. If the rows are
linearly dependent, then we can �nd �0; ::::; �n�1 2 F so that

�0

26664
1
1
...
1

37775+ �1
26664
t1
t2
...
tn

37775+ � � �+ �n�1
26664
tn�11

tn�12
...

tn�1n

37775 = 0:
Thus the polynomial

p (t) = �0 + �1t+ � � �+ �n�1tn�1

has t1; :::; tn as roots. In other words we have a polynomial of degree � n� 1 with
n roots. This is not possible unless �1 = � � � = �n�1 = 0 (see also �Polynomials�
in chapter 2).

The criteria for linear dependence lead to an important result about the powers
of a linear operator. Before going into that we observe that there is a connection
between polynomials and linear combinations of powers of a linear operator. Let
L : V ! V be a linear operator on an n-dimensional vector space. If

p (t) = �kt
k + � � �+ �1t+ �0 2 F [t] ;

then
p (L) = �kL

k + � � �+ �1L+ �01V
is a linear combination of

Lk; :::; L; 1V :

Conversely any linear combination of Lk; :::; L; 1V must look like this.
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Since hom (V; V ) has dimension n2 it follows that 1V ; L; L2; ::::; Ln
2

are linearly
dependent. This means that we can �nd a smallest positive integer k � n2 such
that 1V ; L; L2; ::::; Lk are linearly dependent. Thus 1V ; L; L2; ::::; Ll are linearly
independent for l < k and

Lk 2 span
�
1V ; L; L

2; ::::; Lk�1
	
:

In the next chapter we shall show that k � n: The fact that
Lk 2 span

�
1V ; L; L

2; ::::; Lk�1
	

means that we have a polynomial

�L (t) = tk + �k�1t
k�1 + � � �+ �1t+ �0

such that
�L (L) = 0:

This is the so called minimal polynomial for L: Apparently there is no polynomial
of smaller degree that has L as a root.

Recall that we characterized projections as linear operators that satisfy L2 = L
(see �Linear Maps and Subspaces�). Thus nontrivial projections are precisely the
operators whose minimal polynomial is �L (t) = t2 � t: Note that teow trivial
projections 1V and 0V have minimal polynomials �1V = t� 1 and �0V = t:

Example 39. Let

A =

�
� 1
0 �

�

B =

24 � 0 0
0 � 1
0 0 �

35
C =

24 0 �1 0
1 0 0
0 0 i

35
We note that A is not proportional to 1V ; while

A2 =

�
� 1
0 �

�2
=

�
�2 2�

0 �2

�
= 2�

�
� 1
0 �

�
� �2

�
1 0
0 1

�
:

Thus
�A (t) = t2 � 2�t+ �2 = (t� �)2 :

The calculation for B is similar and evidently yields the same minimal polynomial

�B (t) = t2 � 2�t+ �2 = (t� �)2 :
Finally for C we note that

C2 =

24 �1 0 0
0 �1 0
0 0 �1

35
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Thus
�C (t) = t2 + 1:

In the theory of di¤erential equations it is also important to understand when
functions are linearly independent. We start with vector valued functions x1 (t) ; :::;
xk (t) : I ! Fn; where I is any set, but usually an interval. These k functions are
linearly independent provided they are linearly independent at just one point t0 2 I:
In other words if the k vectors x1 (t0) ; :::; xk (t0) 2 Fn are linearly independent
then the functions are also linearly independent. The converse statement is not
true in general. To see why this is we give a speci�c example.

Example 40. It is an important fact from analysis that there are functions
� (t) 2 C1 (R;R) such that

� (t) =

�
0 t � 0
1 t � 1

these can easily be pictured, but it takes some work to construct them. Given this
function we consider x1; x2 : R! R2 de�ned by

x1 (t) =

�
� (t)
0

�
;

x2 (t) =

�
0

� (�t)

�
:

When t � 0 we have that x1 = 0 so the two functions are linearly dependent on
(�1; 0]: When t � 0; we have that x2 (t) = 0 so the functions are also linearly
dependent on [0;1): Now assume that we can �nd �1; �2 2 R such that

�1x1 (t) + �2x2 (t) = 0 for all t 2 R:
If t � 1; this implies that

0 = �1x1 (t) + �2x2 (t)

= �1

�
1
0

�
+ �2

�
0
0

�
= �1

�
1
0

�
:

Thus �1 = 0: Similarly we have for t � �1
0 = �1x1 (t) + �2x2 (t)

= �1

�
0
0

�
+ �2

�
1
0

�
= �2

�
1
0

�
:

So �2 = 0: This shows that the two functions x1 and x2 are linearly independent as
functions on R even though they are linearly dependent for each t 2 R:

Next we want to study what happens in the spacial case where n = 1, i.e.,
we have functions x1 (t) ; :::; xk (t) : I ! F: In this case the above strategy for
determining linear independence at a point completely fails as the values lie in a
one dimensional vector space. We can, however, construct auxiliary vector valued
functions by taking derivatives. In order to be able to take derivatives we have to
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assume either that I = F and xi 2 F [t] are polynomials with the formal derivatives
de�ned as in exercise 2 in �Linear Maps�or that I � R is an interval, F = C; and
xi 2 C1 (I;C) : In either case we can then construct new vector valued functions
z1; :::; zk : I ! Fk by listing xi and its �rst k � 1 derivatives in column form

zi (t) =

2664
xi (t)

(Dxi) (t)�
Dk�1xi

�
(t)

3775
First we claim that x1; :::; xk are linearly dependent if and only if z1; :::; zk are
linearly dependent. This quite simple and depends on the fact that Dn is linear.
We only need to observe that

�1z1 + � � �+ �kzk = �1

26664
x1
Dx1
...

Dk�1x1

37775+ � � �+ �k
26664

xk
Dxk
...

Dk�1xk

37775

=

26664
�1x1
�1Dx1
...

�1D
k�1x1

37775+ � � �+
26664

�kxk
�kDxk
...

�kD
k�1xk

37775

=

26664
�1x1 + � � �+ �kxk

�1Dx1 + � � �+ �kDxk
...

�1D
k�1x1 + � � �+ �kDk�1xk

37775

=

26664
�1x1 + � � �+ �kxk

D (�1x1 + � � �+ �kxk)
...

Dk�1 (�1x1 + � � �+ �kxk)

37775 :
Thus �1z1 + � � � + �kzk = 0 if and only if �1x1 + � � � + �kxk = 0: This shows the
claim. Let us now see how this works in action.

Example 41. Let xi (t) = exp (�it) ; where �i 2 C are distinct. Then

zi (t) =

26664
exp (�it)
�i exp (�it)

...
�k�1i exp (�it)

37775 =
26664

1
�i
...

�k�1i

37775 exp (�it) :
Thus exp (�1t) ; :::; exp (�kt) are linearly independent as we saw above that the vec-
tors 26664

1
�1
...

�k�11

37775 ; :::;
26664

1
�k
...

�k�1k

37775
are linearly independent.
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Example 42. Let xk (t) = cos (kt) ; k = 0; 1; 2; :::; n: In this case direct check
will involve a matrix that has both cosines and sines in alternating rows. Instead
we can use Euler�s formula that

xk (t) = cos (kt) =
1

2
eikt � 1

2
e�ikt:

We know from the previous exercise that the 2n + 1 functions exp (ikt) ; k =
0;�1; :::;�n are linearly independent. Thus the original n + 1 cosine functions
are also linearly independent.

Note that if we added the n sine functions yk (t) = sin (kt) ; k = 1; :::; n we have
2n+ 1 cosine and sine functions that also become linearly independent.

12.1. Exercises.
(1) (Characterization of Linear Independence) Show that x1; :::; xn are lin-

early independent in V if and only if

span fx1; :::; x̂i; :::; xng 6= span fx1; :::; xng

for all i = 1; :::; n .
(2) (Characterization of Linear Independence) Show that x1; :::; xn are lin-

early independent in V if and only if

span fx1; :::; xng = span fx1g � � � � � span fxng :

(3) Assume that we have nonzero vectors x1; :::; xk 2 V and a direct sum of
subspaces

M1 + � � �+Mk =M1 � � � � �Mk:

Show that if xi 2Mi; then x1; :::; xk are linearly independent.
(4) Show that t3 + t2 + 1; t3 + t2 + t; t3 + t + 2 are linearly independent in

P3: Which of the standard basis vectors 1; t; t2; t3 can be added to this
collection to create a basis for P3?

(5) If p0 (t) ; :::; pn (t) 2 F [t] all have degree � n and all vanish at t0; then
they are linearly dependent.

(6) Assume that we have two �elds F � L; such as R � C:
(a) If x1; :::; xm form a basis for Fm; then they also form a basis for Lm:
(b) If x1; :::; xk are linearly independent in Fm; then they are also linearly

independent in Lm:
(c) If x1; :::; xk are linearly dependent in Fm; then they are also linearly

dependent in Lm:
(d) If x1; :::; xk 2 Fm; then

dimF spanF fx1; :::; xkg = dimL spanL fx1; :::; xkg :

(e) If M � Fm is a subspace, then

M = spanL (M) \ Fm:

(f) Let A 2 Matn�m (F) : Then A : Fm ! Fn is one-to-one (resp. onto)
if and only if A : Lm ! Ln is one-to-one (resp. onto).

(7) Show that dimF V � n if and only if every collection of n + 1 vectors is
linearly dependent.

(8) Assume that x1; :::; xk span V and that L : V ! V is a linear map that
is not one-to-one. Show that L (x1) ; :::; L (xk) are linearly dependent.
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(9) If x1; :::; xk are linearly dependent, then L (x1) ; :::; L (xk) are linearly de-
pendent.

(10) If L (x1) ; :::; L (xk) are linearly independent, then x1; :::; xk are linearly
independent.

(11) Let A 2 Matn�m (F) and assume that y1; :::; ym 2 V�
y1 � � � ym

�
=
�
x1 � � � xn

�
A

where x1; :::; xn form a basis for V:
(a) Show that y1; :::; ym span V if and only if A has rank n: Conclude

that m � n:
(b) Show that y1; :::; ym are linearly independent if and only if ker (A) =
f0g : Conclude that m � n:

(c) Show that y1; :::; ym form a basis for V if and only if A is invertible.
Conclude that m = n:

13. Row Reduction

In this section we give a brief and rigorous outline of the standard procedures
involved in solving systems of linear equations. The goal in the context of what
we have already learned is to �nd a way of computing the image and kernel of a
linear map that is represented by a matrix. Along the way we shall reprove that
the dimension is well-de�ned as well as the dimension formula for linear maps.

The usual way of writing n equations with m variables is

a11x1 + � � �+ a1mxm = b1
...

...
...

an1x1 + � � �+ anmxm = bn

where the variables are x1; :::; xm. The goal is to understand for which choices of
constants aij and bi such systems can be solved and then list all the solutions. To
conform to our already speci�ed notation we change the system so that it looks like

�11�1 + � � �+ �1m�m = �1
...

...
...

�n1�1 + � � �+ �nm�m = �n

In matrix form this becomes264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
264 �1

...
�n

375 =
264 �1

...
�n

375
and can be abbreviated to

Ax = b:

As such we can easily use the more abstract language of linear algebra to address
some general points.

Proposition 3. Let L : V !W be a linear map.

(1) L (x) = b can be solved if and only if b 2 im (L) :
(2) If L (x0) = b and x 2 ker (L) ; then L (x+ x0) = b:
(3) If L (x0) = b and L (x1) = b; then x0 � x1 2 ker (L) :
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Therefore, we can �nd all solutions to L (x) = b provided we can �nd the kernel
ker (L) and just one solution x0: Note that the kernel consists of the solutions to
what we call the homogeneous system: L (x) = 0:

With this behind us we are now ready to address the issue of how to make the
necessary calculations that allow us to �nd a solution to264 �11 � � � �1m

...
. . .

...
�n1 � � � �nm

375
264 �1

...
�n

375 =
264 �1

...
�n

375
The usual method is through elementary row operations. To keep things more
conceptual think of the actual linear equations

�11�1 + � � �+ �1m�m = �1
...

...
...

�n1�1 + � � �+ �nm�m = �n

and observe that we can perform the following three operations without changing
the solutions to the equations:

(1) Interchanging equations (or rows).
(2) Adding a multiple of an equation (or row) to a di¤erent equation (or row).
(3) Multiplying an equation (or row) by a nonzero number.

Using these operations one can put the system in row echelon form. This is
most easily done by considering the augmented matrix, where the variables have
disappeared 264 �11 � � � �1m

...
. . .

...
�n1 � � � �nm

�������
�1
...
�n

375
and then performing the above operations, now on rows, until it takes the special
form where

(1) The �rst nonzero entry in each row is normalized to be 1. This is also
called the leading 1 for the row.

(2) The leading 1s appear in echelon form, i.e., as we move down along the
rows the leading 1s will appear farther to the right.

The method by which we put a matrix into row echelon form is called Gauss
elimination. Having put the system into this simple form one can then solve it by
starting from the last row or equation.

When doing the process on A itself we denote the resulting row echelon matrix
by Aref : There are many ways of doing row reductions so as to come up with a row
echelon form for A and it is quite likely that one ends up with di¤erent echelon
forms. To see why consider

A =

24 1 1 0
0 1 1
0 0 1

35 :
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This matrix is clearly in row echelon form. However we can subtract the second
row from the �rst row to obtain a new matrix which is still in row echelon form:24 1 0 �1

0 1 1
0 0 1

35
It is now possible to use the last row to arrive at24 1 0 0

0 1 0
0 0 1

35 :
The important information about Aref is the placement of the leading 1 in each
row and this placement will always be the same for any row echelon form. To
get a unique row echelon form we need to reduce the matrix using Gauss-Jordan
elimination. This process is what we just performed on the above matrix A: The
idea is to �rst arrive at some row echelon form Aref and then starting with the
second row eliminate all entries above the leading 1, this is then repeated with row
three, etc. In this way we end up with a matrix that is still in row echelon form,
but also has the property that all entries below and above the leading 1 in each
row are zero. We say that such a matrix is in reduced row echelon form. If we start
with a matrix A, then the resulting reduced row echelon form is denoted Arref : For
example, if we have

Aref =

2664
0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3775 ;
then we can reduce further to get a new reduced row echelon form

Arref =

2664
0 1 4 0 2 �2 0
0 0 0 1 �2 5 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3775 :
The row echelon form and reduced row echelon form of a matrix can more

abstractly be characterized as follows. Suppose that we have an n � m matrix
A =

�
x1 � � � xm

�
; where x1; :::; xm 2 Fn correspond to the columns of A: Let

e1; :::; en 2 Fn be the canonical basis. The matrix is in row echelon form if we can
�nd 1 � j1 < � � � < jk � m; where k � n, such that

xjs = es +
X
i<s

�ijsei

for s = 1; :::; k. For all other indices j we have

xj = 0; if j < j1;

xj 2 span fe1; :::; esg ; if js < j < js+1;

xj 2 span fe1; :::; ekg ; if jk < j:

Moreover, the matrix is in reduced row echelon form if in addition we assume that

xjs = es:
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Below we shall prove that the reduced row echelon form of a matrix is unique,
but before doing so it is convenient to reinterpret the row operations as matrix
multiplication.

Let A 2 Matn�m (F) be the matrix we wish to row reduce. The row operations
we have described can be accomplished by multiplying A by certain invertible n�n
matrices on the left. These matrices are called elementary matrices. The de�ne
these matrices we use the standard basis matrices Ekl where the kl entry is 1 while
all other entries are 0. The matrix product EklA is a matrix whose kth row is the
lth row of A and all other rows vanish.

(1) Interchanging rows k and l: This can be accomplished by the matrix
multiplication IklA; where

Ikl = Ekl + Elk +
X
i 6=k;l

Eii

= Ekl + Elk + 1Fn � Ekk � Ell
or in other words the ij entries �ij in Ikl satisfy �kl = �lk = 1; �ii = 1
if i 6= k; l; and �ij = 0 otherwise. Note that Ikl = Ilk and IklIlk = 1Fn .
Thus Ikl is invertible.

(2) Multiplying row l by � 2 F and adding it to row k 6= l: This can be
accomplished via Rkl (�)A; where

Rkl (�) = 1Fn + �Ekl

or in other words the ij entries �ij in Rkl (�) look like �ii = 1; �kl = �;
and �ij = 0 otherwise. This time we note that Rkl (�)Rkl (��) = 1Fn :

(3) Multiplying row k by � 2 F�f0g : This can be accomplished byMk (�)A;
where

Mk (�) = �Ekk +
X
i 6=k

Eii

= 1Fn + (�� 1)Ekk
or in other words the ij entries �ij of Mk (�) are �kk = �, �ii = 1 if
i 6= k; and �ij = 0 otherwise. Clearly Mk (�)Mk

�
��1

�
= 1Fn :

Performing row reductions on A is now the same as doing a matrix multipli-
cation PA; where P 2 Matn�n (F) is a product of the elementary matrices. Note
that such P are invertible and that P�1 is also a product of elementary matrices.
The elementary 2� 2 matrices look like.

I12 =

�
0 1
1 0

�
;

R12 (�) =

�
1 �
0 1

�
;

R21 (�) =

�
1 0
� 1

�
;

M1 (�) =

�
� 0
0 1

�
;

M2 (�) =

�
1 0
0 �

�
:
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If we multiply these matrices onto A from the left we obtain the desired operations:

I12A =

�
0 1
1 0

� �
�11 �12
�21 �22

�
=

�
�21 �22
�11 �12

�

R12 (�)A =

�
1 �
0 1

� �
�11 �12
�21 �22

�
=

�
�11 + ��21 �12 + ��22

�21 �22

�
R21 (�)A =

�
1 0
� 1

� �
�11 �12
�21 �22

�
=

�
�11 �12

��11 + �21 ��12 + �22

�
M1 (�)A =

�
� 0
0 1

� �
�11 �12
�21 �22

�
=

�
��11 ��12
�21 �22

�
M2 (�)A =

�
1 0
0 �

� �
�11 �12
�21 �22

�
=

�
�11 �12
��21 ��22

�
We can now move on to the important result mentioned above.

Theorem 8. (Uniqueness of Reduced Row Echelon Form) The reduced row
echelon form of an n�m matrix is unique.

Proof. Let A 2 Matn�m (F) and assume that we have two reduced row eche-
lon forms

PA =
�
x1 � � � xm

�
;

QA =
�
y1 � � � ym

�
;

where P;Q 2 Matn�n (F) are invertible. In particular, we have that

R
�
x1 � � � xm

�
=
�
y1 � � � ym

�
where R 2 Matn�n (F) is invertible. We shall show that xi = yi; i = 1; :::;m by
induction on n:

First observe that if A = 0; then there is nothing to prove. If A 6= 0; then both
of the reduced row echelon forms have to be nontrivial. Then we have that

xi1 = e1;

xi = 0 for i < i1

and

yj1 = e1;

yi = 0 for i < j1:

The relationship Rxi = yi shows that yi = 0 if xi = 0. Thus j1 � i1: Similarly
the relationship yi = R�1xi shows that xi = 0 if yi = 0: Hence also j1 � i1: Thus
i1 = j1 and xi1 = e1 = yj1 . This implies that Re1 = e1 and R�1e1 = e1: In other
words

R =

�
1 0
0 R0

�
where R0 2 Mat(n�1)�(n�1) (F) is invertible. In the special case where n = 1; we are
�nished as we have shown that R = [1] in that case. This anchors our induction.
We can now assume that the induction hypothesis is that all (n� 1)�m matrices
have unique reduced row echelon forms.
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If we de�ne x0i, y
0
i 2 Fn�1 as the last n� 1 entries in xi and yi, i.e.,

xi =

�
�1i
x0i

�
;

yi =

�
�1i
y0i

�
;

then we see that
�
x01 � � � x0m

�
and

�
y01 � � � y0m

�
are still in reduced row

echelon form. Moreover, the relationship�
y1 � � � ym

�
= R

�
x1 � � � xm

�
now implies that�

�11 � � � �1m
y01 � � � y0m

�
=

�
y1 � � � ym

�
= R

�
x1 � � � xm

�
=

�
1 0
0 R0

� �
�11 � � � �1m
x01 � � � x0m

�
=

�
�11 � � � �1m
R0x01 � � � R0x0m

�
Thus

R0
�
x01 � � � x0m

�
=
�
y01 � � � y0m

�
:

The induction hypothesis now implies that x0i = y0i: This combined with�
y1 � � � ym

�
=

�
�11 � � � �1m
y01 � � � y0m

�
=

�
�11 � � � �1m
R0x01 � � � R0x0m

�
=

�
x1 � � � xm

�
shows that xi = yi for all i = 1; :::;m: �

We are now ready to explain how the reduced row echelon form can be used to
identify the kernel and image of a matrix. Along the way we shall reprove some of
our earlier results. Suppose that A 2 Matn�m (F) and

PA = Arref

=
�
x1 � � � xm

�
;

where we can �nd 1 � j1 < � � � < jk � m; such that
xjs = es for i = 1; :::; k

xj = 0; if j < j1;

xj 2 span fe1; :::; esg ; if js < j < js+1;

xj 2 span fe1; :::; ekg ; if jk < j:

Finally let i1 < � � � < im�k be the indices complementary to j1; ::; jk; i.e.,

f1; :::;mg = fj1; ::; jkg [ fi1; :::; im�kg :
We are �rst going to study the kernel of A: Since P is invertible we see that Ax = 0
if and only if Arrefx = 0: Thus we need only study the equation Arrefx = 0: If we
let x = (�1; :::; �m) ; then the nature of the equations Arrefx = 0 will tell us that
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(�1; :::; �m) are uniquely determined by �i1 ; :::; �im�k : To see why this is we note
that if we have Arref = [�ij ] ; then the reduced row echelon form tells us that

�j1 + �1i1�i1 + � � �+ �1im�k�im�k = 0;

...

�jk + �ki1�i1 + � � �+ �kim�k�im�k = 0;

Thus �j1 ; :::; �jk have explicit formulas in terms of �i1 ; :::; �im�k : We actually get a
bit more information: If we take (�1; :::; �m�k) 2 Fm�k and construct the unique
solution x = (�1; :::; �m) such that �i1 = �1; :::; �im�k = �m�k then we have actually
constructed a map

Fm�k ! ker (Arref)

(�1; :::; �m�k) ! (�1; :::; �m) :

We have just seen that this map is onto. The construction also gives us explicit
formulas for �j1 ; :::; �jk that are linear in �i1 = �1; :::; �im�k = �m�k: Thus the map
is linear. Finally if (�1; :::; �m) = 0; then we clearly also have (�1; :::; �m�k) = 0; so
the map is one-to-one. All in all it is a linear isomorphism.

This leads us to the following result.

Theorem 9. (Uniqueness of Dimension) Let A 2 Matn�m (F) ; if n < m; then
ker (A) 6= f0g : Consequently Fn and Fm are not isomorphic.

Proof. Using the above notation we have k � n < m: Thus m � k > 0:
From what we just saw this implies ker (A) = ker (Arref) 6= f0g. In particular
it is not possible for A to be invertible. This shows that Fn and Fm cannot be
isomorphic. �

Having now shown that the dimension of a vector space is well-de�ned we can
then establish the dimension formula. Part of the proof of this theorem is to identify
a basis for the image of a matrix. Note that this proof does not depend on the result
that subspaces of �nite dimensional vector spaces are �nite dimensional. In fact for
the subspaces under consideration, namely, the kernel and image, it is part of the
proof to show that they are �nite dimensional.

Theorem 10. (The Dimension Formula) Let A 2 Matn�m (F) ; then
m = dim (ker (A)) + dim (im (A)) :

Proof. We use the above notation. We just saw that dim (ker (A)) = m� k;
so it remains to check why dim (im (A)) = k?

If
A =

�
y1 � � � ym

�
;

then we have yi = P�1xi; where

Arref =
�
x1 � � � xm

�
:

We know that each

xj 2 span fe1; :::; ekg = span fxj1 ; :::; xjkg ;
thus we have that

yj 2 span fyj1 ; :::; yjkg :
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Moreover, as P is invertible we see that yj1 ; :::; yjk must be linearly independent
as e1; :::; ek are linearly independent. This proves that yj1 ; :::; yjk form a basis for
im (A) : �

Corollary 9. (Subspace Theorem) Let M � Fn be a subspace. Then M is
�nite dimensional and dim (M) � n:

Proof. Recall from �Subspaces� that every subspace M � Fn has a com-
plement. This means that we can construct a projection as in �Linear Maps and
Subspaces� that has M as kernel. This means that M is the kernel for some
A 2 Matn�n (F). Thus the previous theorem implies the claim. �

It might help to see an example of how the above constructions work.

Example 43. Suppose that we have a 4� 7 matrix

A =

2664
0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1
0 0 0 0 0 0 1

3775
Then

Arref =

2664
0 1 4 0 2 �2 0
0 0 0 1 �2 5 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3775
Thus j1 = 2; j2 = 4; and j3 = 7: The complementary indices are i1 = 1; i2 = 3;
i3 = 5; and i4 = 6: Hence

im (A) = span

8>><>>:
2664
1
0
0
0

3775 ;
2664
1
1
0
0

3775 ;
2664
�1
�4
1
1

3775
9>>=>>;

and

ker (A) =

8>>>>>>>><>>>>>>>>:

2666666664

�1
�4�3 � 2�5 + 2�6

�3
2�5 � 5�6

�5
�6
0

3777777775
: �1; �3; �5; �6 2 F

9>>>>>>>>=>>>>>>>>;
:

Our method for �nding a basis for the image of a matrix leads us to a di¤erent
proof of the rank theorem. The column rank of a matrix is simply the dimension
of the image, in other words, the maximal number of linearly independent column
vectors. Similarly the row rank is the maximal number of linearly independent
rows. In other words, the row rank is the dimension of the image of the transposed
matrix.

Theorem 11. (The Rank Theorem) Any n �m matrix has the property that
the row rank is equal to the column rank.



13. ROW REDUCTION 71

Proof. We just saw that the column rank for A and Arref are the same and
equal to k with the above notation. Because of the row operations we use, it is clear
that the rows of Arref are linear combinations of the rows of A: As the process can
be reversed the rows of A are also linear combinations of the rows Arref : Hence A
and Arref also have the same row rank. Now Arref has k linearly independent rows
and must therefore have row rank k: �

Using the rank theorem together with the dimension formula leads to an inter-
esting corollary.

Corollary 10. Let A 2 Matn�n (F) : Then
dim (ker (A)) = dim

�
ker
�
At
��
;

where At 2 Matn�n (F) is the transpose of A:

We are now going to clarify what type of matrices P occur when we do the
row reduction to obtain PA = Arref : If we have an n � n matrix A with trivial
kernel, then it must follow that Arref = 1Fn : Therefore, if we perform Gauss-Jordan
elimination on the augmented matrix

Aj1Fn ;
then we end up with an answer that looks like

1Fn jB:
The matrix B evidently satis�es AB = 1Fn : To be sure that this is the inverse we
must also check that BA = 1Fn : However, we know that A has an inverse A�1: If
we multiply the equation AB = 1Fn by A�1 on the left we obtain B = A�1: This
settles the uncertainty.

The space of all invertible n�n matrices is called the general linear group and
is denoted by:

Gln (F) =
�
A 2 Matn�n (F) : 9 A�1 2 Matn�n (F) with AA�1 = A�1A = 1Fn

	
:

This space is a so called group. This means that we have a set G and a product
operation G�G! G denoted by (g; h)! gh: This product operation must satisfy

(1) Associativity: (g1g2) g3 = g1 (g2g3) :
(2) Existence of a unit e 2 G such that eg = ge = g:
(3) Existence of inverses: For each g 2 G there is g�1 2 G such that gg�1 =

g�1g = e:

If we use matrix multiplication in Gln (F) and 1Fn as the unit, then it is clear
that Gln (F) is a group. Note that we don�t assume that the product operation in
a group is commutative, and indeed it isn�t commutative in Gln (F) unless n = 1:

If a possibly in�nite subset S � G of a group has the property that any element
in G can be written as a product of elements in S; then we say that S generates G:

We can now prove

Theorem 12. The general linear group Gln (F) is generated by the elementary
matrices Ikl; Rkl (�) ; and Mk (�).

Proof. We already observed that Ikl; Rkl (�) ; and Mk (�) are invertible and
hence form a subset in Gln (F) : Let A 2 Gln (F) ; then we know that also A�1 2
Gln (F) : Now observe that we can �nd P 2 Gln (F) as a product of elementary ma-
trices such that PA�1 = 1Fn : This was the content of the Gauss-Jordan elimination
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process for �nding the inverse of a matrix. This means that P = A and hence A is
a product of elementary matrices. �

As a corollary we have:

Corollary 11. Let A 2 Matn�n (F) ; then it is possible to �nd P 2 Gln (F)
such that PA is upper triangular:

PA =

26664
�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...
0 0 � � � �nn

37775
Moreover

ker (A) = ker (PA)

and ker (A) 6= f0g if and only if the product of the diagonal elements in PA is zero:
�11�22 � � ��nn = 0:

We are now ready to see how the process of calculating Arref using row opera-
tions can be interpreted as a change of basis in the image space.

Two matrices A;B 2 Matn�m (F) are said to be row equivalent if we can �nd
P 2 Gln (F) such that A = PB: Thus row equivalent matrices are the matrices
that can be obtained from each other via row operations. We can also think of row
equivalent matrices as being di¤erent matrix representations of the same linear map
with respect to di¤erent bases in Fn: To see this consider a linear map L : Fm ! Fn
that has matrix representation A with respect to the standard bases. If we perform
a change of basis in Fn from the standard basis f1; :::; fn to a basis y1; :::; yn such
that �

y1 � � � yn
�
=
�
f1 � � � fn

�
P;

i.e., the columns of P are regarded as a new basis for Fn; then B = P�1A is simply
the matrix representation for L : Fm ! Fn when we have changed the basis in Fn
according to P: This information can be encoded in the diagram

Fm A�! Fn
# 1Fm # 1Fn
Fm L�! Fn
" 1Fm " P
Fm B�! Fn

When we consider abstract matrices rather than systems of equations we could
equally well have performed column operations. This is accomplished by multiply-
ing the elementary matrices on the right rather than the left. We can see explicitly
what happens in the 2� 2 case:

AI12 =

�
�11 �12
�21 �22

� �
0 1
1 0

�
=

�
�12 �11
�22 �21

�
AR12 (�) =

�
�11 �12
�21 �22

� �
1 �
0 1

�
=

�
�11 ��11 + �12
�21 ��21 + �22

�
AR21 (�) =

�
�11 �12
�21 �22

� �
1 0
� 1

�
=

�
�11 + ��12 �12
�21 + ��22 �22

�
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AM1 (�) =

�
�11 �12
�21 �22

� �
� 0
0 1

�
=

�
��11 �12
��21 �22

�

AM2 (�) =

�
�11 �12
�21 �22

� �
1 0
0 �

�
=

�
�11 ��12
�21 ��22

�
The only important and slightly confusing thing to be aware of is that, while Rkl (�)
as a row operation multiplies row l by � and then adds it to row k; it now multiplies
column k by � and adds it to column l as a column operation. This is because AEkl
is the matric whose lth column is the kth column of A and whose other columns
vanish.

Two matrices A;B 2 Matn�m (F) are said to be column equivalent if A = BQ
for some Q 2 Glm (F) : According to the above interpretation this corresponds to a
change of basis in the domain space Fm:

More generally we say that A;B 2 Matn�m (F) are equivalent if A = PBQ;
where P 2 Gln (F) and Q 2 Glm (F) : The diagram for the change of basis then
looks like

Fm A�! Fn
# 1Fm # 1Fn
Fm L�! Fn
" Q�1 " P
Fm B�! Fn

In this way we see that two matrices are equivalent if and only if they are matrix
representations for the same linear map. Recall from the previous section that any
linear map between �nite dimensional spaces always has a matrix representation of
the form 26666666664

1 � � � 0 0
. . .

0 � � � 1
...

...
0 0

...
...

. . .
...

0 � � � 0 0 � � � 0

37777777775
where there are k ones in the diagonal if the linear map has rank k: This implies

Corollary 12. (Characterization of Equivalent Matrices) A;B 2 Matn�m (F)
are equivalent if and only if they have the same rank. Moreover any matrix of rank
k is equivalent to a matrix that has k ones on the diagonal and zeros elsewhere.

13.1. Exercises.

(1) Find bases for kernel and image for the following matrices.

(a)

24 1 3 5 1
2 0 6 0
0 1 7 2

35
(b)

24 1 2
0 3
1 4

35
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(c)

24 1 0 1
0 1 0
1 0 1

35

(d)

26664
�11 0 � � � 0
�21 �22 � � � 0
...

...
. . .

...
�n1 �n2 � � � �nn

37775 In this case it will be necessary to discuss
whether or not �ii = 0 for each i = 1; :::; n:

(2) Find A�1 for each of the following matrices.

(a)

2664
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3775
(b)

2664
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

3775
(c)

2664
0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1

3775
(3) Let A 2 Matn�m (F) : Show that we can �nd P 2 Gln (F) that is a product

of matrices of the types Iij and Rij (�) such that PA is upper triangular.
(4) Let A = Matn�n (F) :We say that A has an LU decomposition if A = LU;

where L is lower triangular with 1s on the diagonal and U is upper trian-
gular. Show that A has an LU decomposition if all the leading principal
minors are invertible. The leading principal k � k minor is the k � k
submatrix gotten from A by eliminating the last n� k rows and columns.
Hint: Do Gauss elimination using only Rij (�).

(5) Assume that A = PB;where P 2 Gln (F)
(a) Show that ker (A) = ker (B) :
(b) Show that if the column vectors yi1 ; :::; yik of B form a basis for

im (B) ; then the corresponding column vectors xi1 ; :::; xik for A form
a basis for im (A) :

(6) Let A 2 Matn�m (F) :
(a) Show that the m�m elementary matrices Iij ; Rij (�) ;Mi (�) when

multiplied on the right correspond to column operations.
(b) Show that we can �nd Q 2 Glm (F) such that AQ is lower triangular.
(c) Use this to conclude that im (A) = im (AQ) and describe a basis for

im (A) :
(d) Use Q to �nd a basis for ker (A) given a basis for ker (AQ) and

describe how you select a basis for ker (AQ) :
(7) Let A 2 Matn�n (F) be upper triangular.

(a) Show that dim (ker (A)) � number of zero entries on the diagonal.
(b) Give an example where dim (ker (A)) < number of zero entries on the

diagonal.
(8) In this exercise you are asked to show some relationships between the

elementary matrices.
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(a) Show that Mi (�) = IijMj (�) Iji:
(b) Show that Rij (�) =Mj

�
��1

�
Rij (1)Mj (�) :

(c) Show that Iij = Rij (�1)Rji (1)Rij (�1)Mj (�1) :
(d) Show that Rkl (�) = IkiIljRij (�) IjlIik; where in case i = k or j = k

we interpret Ikk = Ill = 1Fn :
(9) A matrix A 2 Gln (F) is a permutation matrix if Ae1 = e�(i) for some

bijective map (permutation)

� : f1; :::; ng ! f1; :::; ng :

(a) Show that

A =
nX
i=1

E�(i)i

(b) Show that A is a permutation matrix if and only if A has exactly
one entry in each row and column which is 1 and all other entries are
zero.

(c) Show that A is a permutation matrix if and only if it is a product of
the elementary matrices Iij :

(10) Assume that we have two �elds F � L; such as R � C; and consider
A 2 Matn�m (F) : Let AL 2 Matn�m (L) be the matrix A thought of as
an element of Matn�m (L) : Show that dimF (ker (A)) = dimL (ker (AL))
and dimF (im (A)) = dimL (im (AL)). Hint: Show that A and AL have the
same reduced row echelon form.

(11) Given �ij 2 F for i < j and i; j = 1; :::; n we wish to solve

�i
�j
= �ij :

(a) Show that this system either has no solutions or in�nitely many so-
lutions. Hint: try n = 2; 3 �rst.

(b) Give conditions on �ij that guarantee an in�nite number of solutions.
(c) Rearrange this system into a linear system and explain the above

results.

14. Dual Spaces�

For a vector space V over F we de�ne the dual vector space V 0 = hom (V;F) as
the set of linear functions on V: One often sees the notation V � for V 0: However,
we have reserved V � for the conjugate vector space to a complex vector space.
When V is �nite dimensional we know that V and V 0 have the same dimension. In
this section we shall see how the dual vector space can be used as a substitute for
an inner product on V in case V doesn�t come with a natural inner product (see
chapter 3 for the theory on inner product spaces).

We have a natural dual pairing V �V 0 ! F de�ned by (x; f) = f (x) for x 2 V
and f 2 V 0: We are going to think of (x; f) as a sort of inner product between x
and f: Using this notation will enable us to make the theory virtually the same
as for inner product spaces. Observe that this pairing is linear in both variables.
Linearity in the �rst variable is a consequence of using linear functions in the second
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variable. Linearity in the second variable is completely trivial:

(�x+ �y; f) = f (�x+ �y)

= �f (x) + �f (y)

= � (x; f) + � (y; f) ;

(x; �f + �g) = (�f + �g) (x)

= �f (x) + �g (x)

= � (x; f) + � (x; g) :

We start with our construction of a dual basis, these are similar to orthonormal
bases. Let V have a basis x1; :::; xn; and de�ne linear functions fi by fi (xj) = �ij :
Thus (xi; fj) = fj (xi) = �ij .

Example 44. Recall that we de�ned dxi : Rn ! R as the linear function such
that dxi (ej) = �ij ; where e1; :::; en is the canonical basis for Rn:Thus dxi is the
dual basis to the canonical basis.

Proposition 4. The vectors f1; :::; fn for V 0 form a basis called the dual basis
of x1; :::; xn: Moreover for x 2 V and f 2 V 0 we have the expansions

x = (x; f1)x1 + � � �+ (x; fn)xn;
f = (x1; f) f1 + � � �+ (xn; f) fn:

Proof. Consider a linear combination �1f1 + � � �+ �nfn: Then
(xi; �1f1 + � � �+ �nfn) = �1 (xi; f1) + � � �+ �n (xi; fn)

= �i:

Thus �i = 0 if �1f1 + � � � + �nfn = 0: Since V and V 0 have the same dimension
this shows that f1; ::::fn form a basis for V 0: Moreover, if we have an expansion
f = �1f1 + � � �+ �nfn; then it follows that �i = (xi; f) = f (xi) :

Finally assume that x = �1x1 + � � �+ �nxn: Then
(x; fi) = (�1x1 + � � �+ �nxn; fi)

= �1 (x1; fi) + � � �+ �n (xn; fi)
= �i;

which is what we wanted to prove. �

Next we de�ne annihilators, these are counter parts to orthogonal complements.
Let M � V be a subspace and de�ne the annihilator to M in V as the subspace
M0 � V 0 given by

Mo = ff 2 V 0 : (x; f) = 0 for all x 2Mg
= ff 2 V 0 : f (x) = 0 for all x 2Mg
= ff 2 V 0 : f (M) = f0gg
= ff 2 V 0 : f jM = 0g :

Using dual bases we can get a slightly better grip on these annihilators.

Proposition 5. If M � V is a subspace of a �nite dimensional space and
x1; :::; xn is a basis for V such that

M = span fx1; :::; xmg ;
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then
Mo = span ffm+1; :::; fng

where f1; :::; fn is the dual basis. In particular we have

dim (M) + dim (Mo) = dim (V ) = dim (V 0) :

Proof. If M = span fx1; :::; xmg ; then fm+1; :::; fn 2Mo by de�nition of the
annihilator as each of fm+1; :::; fn vanish on the vectors x1; :::; xm: Conversely take
f 2Mo and expand it f = �1f1 + � � �+ �nfn: If 1 � i � m; then

0 = (xi; f) = �i:

So f = �m+1fm+1 + � � �+ �nfn as desired. �
We now wish to establish the re�exive property. This will allow us to go from

V 0 back to V itself rather than to (V 0)0 = V 00: Thus we have to �nd a natural
identi�cation V ! V 00: There is, indeed a natural linear map that takes each x 2 V
to a linear function on V 0 de�ned by evx (f) = (x; f) = f (x) : To see that it is
linear observe that

(�x+ �y; f) = f (�x+ �y)

= �f (x) + �f (y)

= � (x; f) + � (y; f) :

Evidently we have de�ned evx in such a way that

(x; f) = (f; evx) :

Next note that if V is �nite dimensional, then the kernel of x! evx is f0g : To
prove this we select a dual basis f1; :::; fn for V 0 and observe that since evx (fi) =
(x; fi) records the coordinates of x it is not possible for x to be in the kernel unless
it is zero. Finally we use that dim (V ) = dim (V 0) = dim (V 00) to conclude that this
map is an isomorphism. Thus any element of V 00 is of the form evx for a unique
x 2 V:

The �rst interesting observation we make is that if f1; :::; fn is dual to x1; :::; xn;
then evx1 ; :::; evxn is dual to f1; :::; fn as

evxi (fj) = (xi; fj) = �ij :

If we agree to identify V 00 with V; i.e., we think of x as identi�ed with evx; then we
can de�ne the annihilator of a subspace N � V 0 as

No = fx 2 V : (x; f) = 0 for all f 2 Ng
= fx 2 V : f (x) = 0 for all f 2 Ng :

We then claim that for M � V and N � V 0 we have Moo = M and Noo = N:
Both identities follow directly from the above proposition about the construction
of a basis for the annihilator.

Next we observe an interesting relationship between annihilators and the dual
spaces of subspaces.

Proposition 6. Assume that the �nite dimensional space V = M � N; then
also V 0 = Mo �No and the restriction maps V 0 ! M 0 and V 0 ! N 0 give isomor-
phisms

Mo � N 0;

No � M 0:
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Proof. Select a basis x1; :::; xn for V such that

M = span fx1; :::; xmg ;
N = span fxm+1; :::; xng :

Then let f1; :::; fn be the dual basis and simply observe that

Mo = span ffm+1; :::; fng ;
No = span ff1; :::; fmg :

This proves that V 0 =Mo �No: Next we note that

dim (Mo) = dim (V )� dim (M)
= dim (N)

= dim (N 0) :

So at least Mo and N 0 have the same dimension. What is more, if we restrict
fm+1; :::; fn to N; then we still have that (xj ; fi) = �ij for j = m + 1; :::; n: As
N = span fxm+1; :::; xng ; this means that fm+1jN ; :::; fnjN form a basis for N 0:
The proof that No �M 0 is similar. �

The main problem with using dual spaces rather than inner products is that
while we usually have a good picture of what V is we rarely get a good description
of the dual space. Thus the constructions mentioned here should be thought of as
being theoretical and strictly auxiliary to the developments of the theory of linear
operators on a �xed vector space V:

Below we consider a few examples of constructions of dual spaces.

Example 45. Let V = Matn�m (F) ; then we can identify V 0 = Matm�n (F) :
For each A 2 Matm�n (F) ; the corresponding linear function is

fA (X) = tr (AX) = tr (XA) :

Example 46. If V is a �nite dimensional inner product space then fy (x) =
(xjy) de�nes a linear function and we know that all linear functions are of that
form. Thus we can identify V 0 with V: Note however that in the complex case
y ! fy is not complex linear. It is in fact conjugate linear, i.e., f�y = ��fy: Thus
V 0 is identi�ed with V � where V = V � as real vector spaces but in V � we have the
modi�ed scalar multiplication ��x = ��x: This conforms with the idea that the inner
product de�nes a bilinear paring on V �V � via (x; y)! (x; y) that is linear in both
variables!

Example 47. If we think of V as R with Q as scalar multiplication, then it is
not at all clear that we have any linear functions f : R! Q: In fact the Axiom of
Choice has to be invoked in order to show that they exist.

Example 48. Finally we have an exceedingly intereting in�nite dimensional
examples wehere the dual gets quite a bit bigger. Let V = F [t] be the vector space
of polynomials. We have a natural basis 1; t; t2; :::: Thus a linear map f : F [t]! F
is determined by it values on this basis �n = f (tn). Coversely given an in�nite
sequence �0; �1; �2; ::: 2 F we have a linear map such that f (tn) = �n: So while
V consists of �nite seqeunces of elements from F; the dual consists of in�nite seqe-
unces of elemnts from F: We can evidently identify V 0 = F [[t]] we power series by
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recording the values on the basis as coe¢ cients
1X
n=0

�nt
n =

1X
n=0

f (n) tn:

This means that V 0 inherits a product structure through taking products of power
series. There is a large literature on this whole set-up under the title Umbral
Calculus. For more on this see [Roman].

The dual space construction leads to a dual map L0 :W 0 ! V 0 for a linear map
L : V ! W . This dual map is a generalization of the transpose of a matrix. The
de�nition is very simple

L0 (g) = g � L:
Thus if g 2W 0 we get a linear function g �L : V ! F since L : V !W: The dual to
L is often denoted L0 = Lt as with matrices. This will be justi�ed in the exercises
to this section. Note that if we use the pairing (x; f) between V and V 0 then the
dual map satis�es

(L (x) ; g) = (x; L0 (g))

for all x 2 V and g 2 W 0: Thus the the dual map really is de�ned in a manner
analogous to the adjoint.

The following properties follow almost immediately from the de�nition.

Proposition 7. Let L; ~L : V !W and K :W ! U; then

(1)
�
�L+ � ~L

�0
= �L0 + � ~L0:

(2) (K � L)0 = L0 �K 0:
(3) L00 = (L0)0 = L if we identify V 00 = V and W 00 =W:
(4) IfM � V and N �W are subspaces with L (M) � N , then L0 (No) �Mo:

Proof. 1. Just note that�
�L+ � ~L

�0
(g) = g �

�
�L+ � ~L

�
= �g � L+ �g � ~L
= �L0 (g) + � ~L0 (g)

as g is linear.
2. This comes from

(K � L)0 (h) = h � (K � L)
= (h �K) � L
= K 0 (h) � L
= L0 (K 0 (h)) :

3. Note that L00 : V 00 ! W 00: If we take evx 2 V 00 and use (x; f) = (f; evx)
then

(g; L00 (evx)) = (L0 (g) ; evx)

= (x; L0 (g))

= (L (x) ; g) :

This shows that L00 (evx) is identi�ed with L (x) as desired.
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4. If g 2 V 0; then we have that (x; L0 (g)) = (L (x) ; g) : So if x 2 M; then
we have L (x) 2 N and hence g (L (x)) = 0 for g 2 No: This means that L0 (g) 2
Mo. �

Just like for adjoint maps we have a type of Fredholm alternative for dual maps.

Theorem 13. (The Generalized Fredholm Alternative) Let L : V ! W be a
linear map between �nite dimensional vector spaces. Then

ker (L) = im (L0)
o
;

ker (L0) = im (L)
o
;

ker (L)
o
= im (L0) ;

ker (L0)
o
= im (L) :

Proof. We only need to prove the �rst statement as L00 = L and Moo =M:

ker (L) = fx 2 V : Lx = 0g ;
im (L0)

o
= fx 2 V : (x; L0 (g)) = 0 for all g 2Wg :

Using that (x; L0 (g)) = (L (x) ; g) we note �rst that if x 2 ker (L) ; then it must
also belong to im (L0)o : Conversely if 0 = (x; L0 (g)) = (L (x) ; g) for all g 2 W it
must follow that L (x) = 0 and hence x 2 ker (L) : �

As a corollary we get.

Corollary 13. (The Rank Theorem) Let L : V !W be a linear map between
�nite dimensional vector spaces. Then

rank (L) = rank (L0) :

14.1. Exercises.
(1) Let x1; ::; xn be a basis for V and f1; :::; fn a dual basis for V 0: Show that

the inverses to the isomorphisms�
x1 � � � xn

�
: Fn ! V;�

f1 � � � fn
�
: Fn ! V 0

are given by

�
x1 � � � xn

��1
(x) =

264 f1 (x)
...

fn (x)

375 ;
�
f1 � � � fn

��1
(f) =

264 f (x1)
...

f (xn)

375 :
(2) Let L : V !W with basis x1; :::; xm for V; y1; :::; yn for W and dual basis

g1; :::; gn for W 0. Show that we have

L =
�
x1 � � � xm

�
[L]
�
y1 � � � yn

��1
=

�
x1 � � � xm

�
[L]

264 g1
...
gn

375
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where [L] is the matrix representation for L with respect to the given
bases.

(3) Given the basis 1; t; t2 for P2 identify P2 with C3 and (P2)0 withMat1�3 (C) :
(a) Using these identi�cations �nd a dual basis to 1; 1 + t; 1 + t + t2 in

(P2)
0
:

(b) Using these identi�cations �nd the matrix representation for f 2
(P2)

0 de�ned by

f (p) = p (t0) :

(c) Using these identi�cations �nd the matrix representation for f 2
(P2)

0 de�ned by

f (p) =

Z b

a

p (t) dt:

(d) Are all elements of (P2)
0 represented by the types described in either

b or c?
(4) Let f; g 2 V 0 and assume that g 6= 0: Show that f = �g for some � 2 F if

and only if ker (f) � ker (g) :
(5) Let M � V be a subspace. Show that we have linear maps

Mo i! V 0
�!M 0;

where � is one-to-one, � is onto, and im (i) = ker (�) : Conclude that V 0 is
isomorphic to Mo �M 0:

(6) Let V andW be �nite dimensional vector spaces. Exhibit an isomorphism
between V 0 �W 0 and (V �W )0 that does not depend on choosing bases
for V and W:

(7) Let M;N � V be subspaces of a �nite dimensional vector space. Show
that

Mo +No = (M \N)o ;
(M +N)

o
= Mo \No:

(8) Let L : V !W and assume that we have bases x1; :::; xm for V , y1; :::; yn
for W and corresponding dual bases f1; :::; fm for V 0 and g1; :::; gn for W 0.
Show that if [L] is the matrix representation for L with respect to the
given bases, then [L]t = [L0] with respect to the dual bases.

(9) Assume that L : V ! W is a linear map and that L (M) � N for
subspaces M � V and N � W: Is there a relationship between (LjM )0 :
N 0 !M 0 and L0jNo : No ! Mo?

(10) (The Rank Theorem) This exercise is an abstract version of what hap-
pened in the proof of the rank theorem in �Linear Independence�. Let
L : V !W and x1; :::; xk a basis for im (L) :
(a) Show that

L (x) = (x; f1)x1 + � � �+ (x; fk)xk
for suitable f1; :::; fk 2 V 0:

(b) Show that

L0 (f) = (x1; f) f1 + � � �+ (xk; f) fk
for f 2W 0:



82 1. BASIC THEORY

(c) Conclude that rank (L0) � rank (L) :
(d) Show that rank (L0) = rank (L) :

(11) Let M � V be a �nite dimensional subspace of V and x1; :::; xk a basis
for M: Let

L (x) = (x; f1)x1 + � � �+ (x; fk)xk

for f1; :::; fk 2 V 0
(a) If (xj ; fi) = �ij ; then L is a projection onto M; i.e., L2 = L and

im (L) =M:
(b) If E is a projection onto M; then

E = (x; f1)x1 + � � �+ (x; fk)xk;

with (xj ; fi) = �ij :
(12) Let M;N � V be subspaces of a �nite dimensional vector space and

consider L :M �N ! V de�ned by L (x; y) = x� y:
(a) Show that L0 (f) (x; y) = f (x)� f (y) :
(b) Show that ker (L0) can be identi�ed with bothMo\No and (M +N)

o.

15. Quotient Spaces�

In �Dual Spaces�we saw that ifM � V is a subspace of a general vector space,
then the annihilator subspaceMo � V 0 can play the role of a canonical complement
of M: One thing missing from this set-up, however, is the projection whose kernel
is M: In this section we shall construct a di¤erent type of vector space that can
substitute as a complement to M: It is called the quotient space of V over M and
is denoted V=M . In this case there is an onto linear map P : V ! V=M whose
kernel is M: The quotient space construction is somewhat abstract, but it is also
quite general and can be developed with a minimum of information as we shall see.
It is in fact quite fundamental and can be used to prove several of the important
results mentioned �Linear Maps and Subspaces�.

Similar to addition for subspaces in �Subspaces�we can in fact de�ne addition
for any subsets of a vector space. If S; T � V are subsets then we de�ne

S + T = fx+ y : x 2 S and y 2 Tg :

It is immediately clear that this addition on subsets is associative and commutative.
In case one of the sets contains only one element we simplify the notation by writing

S + fx0g = S + x0 = fx+ x0 : x 2 Sg

and we call S + x0 a translate of S: Geometrically all of the sets S + x0 appear to
be parallel pictures of S that are translated in V as we change x0:We also say that
S and T are parallel and denoted it S k T if T = S + x0 for some x0 2 V:
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It is also possible to scale subsets

�S = f�x : x 2 Sg :

This scalar multiplication satis�es some of the usual properties of scalar multipli-
cation

(��)S = � (�S) ;

1S = S;

� (S + T ) = �S + �T:

However, the other distributive law can fail

(�+ �)S
?
= �S + �S

since it may not be true that

2S
?
= S + S:

Certainly 2S � S + S; but elements x + y do not have to belong to 2S if x; y 2 S
are distinct. Take, e.g., S = fx;�xg ; where x 6= 0: Then 2S = f2x;�2xg ; while
S + S = f2x; 0;�2xg :

Our picture of the quotient space V=M; when M � V is a subspace, is the set
of all translates M + x0 for x0 2 V

V=M = fM + x0 : x0 2 V g

Several of these translates are in fact equal as

x1 +M = x2 +M

precisely when x1�x2 2M: To see why this is, note that if z 2M; then z+M =M
since M is a subspace. Thus x1 � x2 2M implies that

x1 +M = x2 + (x1 � x2) +M
= x2 +M:

Conversely if x1 +M = x2 +M; then x1 = x2 + x for some x 2 M implying that
x1 � x2 2M:

We see that in the trivial case where M = f0g the translates of f0g can be
identi�ed with V itself. Thus V= f0g = V: In the other trivial case where M = V
all the translates are simply V itself. So V=V contains only the element V:

We now need to see how addition and scalar multiplication works on V=M: The
important property that simpli�es calculations and will turn V=M into a vector
space is the fact that M is a subspace. Thus for all scalars �; � 2 F we have

�M + �M =M:

This implies that addition and scalar multiplication is considerably simpli�ed.

� (M + x) + � (M + y) = �M + �M + �x+ �y

= M + �x+ �y:

With this in mind we can show that V=M is a vector space. The zero element is
M since M +(M + x0) =M +x0: The negative of M +x0 is the translate M �x0:



84 1. BASIC THEORY

Finally the important distributive law that wasn�t true in general also holds because

(�+ �) (M + x0) = M + (�+ �)x0

= M + �x0 + �x0

= (M + �x0) + (M + �x0)

= � (M + x0) + � (M + x0) :

The �projection�P : V ! V=M is now de�ned by

P (x) =M + x:

Clearly P is onto and P (x) = 0 if and only if x 2 M: The fact that P is linear
follows from the way we add elements in V=M

P (�x+ �y) = M + �x+ �y

= � (M + x) + � (M + y)

= �P (x) + �P (y) :

This projection can be generalized to the setting where M � N � V: Here we get
V=M ! V=N by mapping x+M to x+N:

If L : V ! W and M � V; L (M) � N � W; then we get an induced map
L : V=M !W=N by sending x+M to L (x)+N:We need to check that this indeed
gives a well-de�ned map. Assuming that x1 +M = x2 +M; we have to show that
L (x1) +N = L (x2) +N: The �rst condition is equivalent to x1 � x2 2M; thus

L (x1)� L (x2) = L (x1 � x2)
2 L (M) � N;

implying that L (x1) +N = L (x2) +N:
We are now going to investigate how the quotient space can be used to under-

stand some of the developments from �Linear Maps and Subspaces�. For any linear
map we have that L (ker (L)) = f0g : Thus L induces a linear map

V= (ker (L))!W= f0g �W:
Since the image of ker (L) + x is f0g+L (x) � x; we see that the induced map has
trivial kernel. This implies that we have an isomorphism

V= (ker (L))! im (L) :

We can put all of this into a commutative diagram

V
L�! W

P # "
V= (ker (L))

��! im (L)

Note that, as yet, we have not used any of the facts we know about �nite
dimensional spaces. The two facts we shall assume are that the dimension of a vector
space is well-de�ned and that any subspace in a �nite dimensional vector space
has a �nite dimensional complement (see �Subspaces�). We start by considering
subspaces.

Theorem 14. (The Subspace Theorem) Let V be a �nite dimensional vector
space. If M � V is a subspace, then both M and V=M are �nite dimensional and

dimV = dimM + dim (V=M) :
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Proof. We start by selecting a subspace N � V that is complementary to
M: If we restrict the projection P : V ! V=M to P jN : N ! V=M; then it has
no kernel as M \N = f0g : On the other hand since any z 2 V can be written as
z = x+ y where x 2M and y 2 N; we see that

M + z = M + x+ y

= M + y

= P (y) :

Thus P jN : N ! V=M is an isomorphism. This shows that V=M is �nite dimen-
sional if we picked N to be �nite dimensional. In the same way we see that the
projection Q : V ! V=N restricts to an isomorphism QjM : M ! V=N: By se-
lecting a �nite dimensional complement for N � V we also get that V=N is �nite
dimensional. This shows that M is �nite dimensional.

We can now use that V =M �N to show that

dimV = dimM + dimN

= dimM + dim (V=M) :

�

The dimension formula now follows from our observations above.

Corollary 14. (The Dimension Formula) Let V be a �nite dimensional vector
space. If L : V !W is a linear map, then

dimV = dim (ker (L)) + dim (im (L)) :

Proof. We just saw that

dimV = dim (ker (L)) + dim (V= (ker (L))) :

In addition we have an isomorphism

V= (ker (L)) �! im (L) :

This proves the claim. �

15.1. Exercises.
(1) An a¢ ne subspaceA � V is a subset such that if x1; :::; xk 2 A; �1; :::; �k 2

F; and �1 + � � � + �k = 1; then �1x1 + � � � + �kxk 2 A: Show that V=M
consists of all of the a¢ ne subspaces parallel to M:

(2) Find an example of a nonzero linear operator L : V ! V and a subspace
M � V such that LjM = 0 and the induced map L : V=M ! V=M is also
zero.

(3) This exercise requires knowledge of the characteristic polynomial. Let
L : V ! V be a linear operator with an invariant subspace M � V: Show
that �L (t) is the product of the characteristic polynomials of LjM and
the induced map L : V=M ! V=M:

(4) Let M � V be a subspace and assume that we have x1; :::; xn 2 V such
that x1; :::; xk form a basis for M and xk+1 +M; :::; xn +M form a basis
for V=M: Show that x1; :::; xn is a basis for V:

(5) Let L : V ! W be a linear map and assume that L (M) � N: How does
the induced map L : V=M !W=N compare to the dual maps constructed
in exercise 2 in �Dual Maps�.
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(6) Let M � V be a subspace. Show that there is a natural isomorphism
Mo ! (V=M)

0
; i.e., an isomorphism that doesn�t depend on a choice of

basis for the spaces.



CHAPTER 2

Linear Operators

In this chapter we are going to present all of the results that relate to linear
operators on abstract �nite dimensional vector spaces. Aside from a section on
polynomials we start with a section on linear di¤erential equations in order to
motivate both some material from chapter 1 and also give a reason for why it is
desirable to study matrix representations. Eigenvectors and eigenvalues are �rst
introduced in the context of di¤erential equations where they are used to solve
such equations. It is, however, possible to start with the section �Eigenvalues�and
ignore the discussion on di¤erential equations. The material developed in chapter
1 on Gauss elimination is used to calculate eigenvalues and vectors and to give a
weak de�nition of the characteristic polynomial. We also introduce the minimal
polynomial and use it to characterize diagonalizable maps. We then move on to
cyclic subspaces leading us to fairly simple proofs of the Cayley-Hamilton Theorem
and the cyclic subspace decomposition. This in turn gives us a nice proof of the
Frobenius canonical from. We �nish with a discussion of the Jordan Canonical
form.

Various properties of polynomials are used quite a bit in this chapter. Most
of these properties are probably already known to the student and in any case are
ceratinly well-known from arithmetic of integers, nevertheless we have chosen to
collect some them in an optional section at the beginning of this chapter.

It is possible to simply cover the sections �Eigenvalues�and �Diagonalizability�
and then move on to the chapters on inner product spaces. In fact it is possible
to skip this chapter entirely as it isn�t really used in the theory of inner product
spaces.

1. Polynomials�

The space of polynomials with coe¢ cients in the �eld F is denoted F [t]. This
space consists of expressions of the form

�0 + �1t+ � � �+ �ktk

where �0; :::; �k 2 F and k is a nonnegative integer. One can think of these expres-
sions as functions on F; but in this section we shall only use the formal algebraic
structure that comes from writing polynomials in the above fashion. Recall that in-
tegers are written in a similar way if we use the standard positional base 10 system
(or any other base for that matter)

ak � � � a0 = ak10
k + ak�110

k�1 + � � �+ a110 + a0:

Indeed there are many basic number theoretic similarities between integers and
polynomials as we shall see below.

87
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Addition is de�ned by adding term by term�
�0 + �1t+ �2t

2 + � � �
�
+
�
�0 + �1t+ �2t

2 + � � �
�

= (�0 + �0) + (�1 + �1) t+ (�2 + �2) t
2 + � � �

Multiplication is a bit more complicated but still completely naturally de�ned by
multiplying all the di¤erent terms and then collecting according to the powers of t�

�0 + �1t+ �2t
2 + � � �

�
�
�
�0 + �1t+ �2t

2 + � � �
�

= �0 � �0 + (�0�1 + �1�0) t+ (�0�2 + �1�1 + �2�0) t2 + � � �

Note that in �addition�the indices match the power of t; while in �multiplication�
each term has the property that the sum of the indices matches the power of t:

The degree of a polynomial �0 + �1t + � � � + �nt
n is the largest k such that

�k 6= 0: In particular

�0 + �1t+ � � �+ �ktk + � � �+ �ntn = �0 + �1t+ � � �+ �ktk;

where k is the degree of the polynomial. We also write deg (p) = k: The degree
satis�es the following elementary properties

deg (p+ q) � max fdeg (p) ;deg (q)g ;
deg (pq) = deg (p) deg (q) :

Note that if deg (p) = 0 then p (t) = �0 is simply a scalar.
We are now ready to discuss the �number theoretic�properties of polynomials.

It is often convenient to work with monic polynomials. These are the polynomials
of the form

�0 + �1t+ � � �+ 1 � tk:

Note that any polynomial can be made into a monic polynomial by diving by the
scalar that appears in front of the term of highest degree. Working with monic
polynomials is similar to working with positive integers rather than all integers.

If p; q 2 F [t] ; then we say that p divides q if q = pd for some d 2 F [t] : Note
that if p divides q; then it must follow that deg (p) � deg (q) : The converse is of
course not true, but polynomial long division gives us a very useful partial answer
to what might happen.

Theorem 15. (The Euclidean Algorithm) If p; q 2 F [t] and deg (p) � deg (q) ;
then q = pd+ r; where deg (r) < deg (p) :

Proof. The proof is along the same lines as how we do long division with
remainder. The idea of the Euclidean algorithm is that whenever deg (p) � deg (q)
it is possible to �nd d1 and r1 such that

q = pd1 + r1;

deg (r1) < deg (q) :

To establish this assume

q = �nt
n + �n�1t

n�1 + � � �+ �0;
p = �mt

m + �m�1t
m�1 + � � �+ �0
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where �n; �m 6= 0: Then de�ne d1 = �n
�m
tn�m and

r1 = q � pd1
=

�
�nt

n + �n�1t
n�1 + � � �+ �0

�
�
�
�mt

m + �m�1t
m�1 + � � �+ �0

� �n
�m

tn�m

=
�
�nt

n + �n�1t
n�1 + � � �+ �0

�
�
�
�nt

n + �m�1
�n
�m

tn�1 + � � �+ �0
�n
�m

tn�m
�

= 0 � tn +
�
�n�1 � �m�1

�n
�m

�
tn�1 + � � �

Thus deg (r1) < n = deg (q) :
If deg (r1) < deg (p) we are �nished, otherwise we use the same construction to

get

r1 = pd2 + r2;

deg (r2) < deg (r1) :

We then continue this process and construct

rk = pdk+1 + rk+1;

deg (rk+1) < deg (rk) :

Eventually we must arrive at a situation where deg (rk) � deg (p) but deg (rk+1) <
deg (p) :

Collecting each step in this process we see that

q = pd1 + r1

= pd1 + pd2 + r2

= p (d1 + d2) + r2
...

= p (d1 + d2 + � � �+ dk+1) + rk+1:

This proves the theorem. �

The Euclidean algorithm is the central construction that makes all of the fol-
lowing results work.

Proposition 8. Let p 2 F [t] and � 2 F: (t� �) divides p if and only if � is a
root of p; i.e., p (�) = 0:

Proof. If (t� �) divides p; then p = (t� �) q: Hence p (�) = 0 � q (�) = 0:
Conversely use the Euclidean algorithm to write

p = (t� �) q + r;
deg (r) < deg (t� �) = 1:
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This means that r = � 2 F: Now evaluate this at �
0 = p (�)

= (�� �) q (�) + r
= r

= �:

Thus r = 0 and p = (t� �) q: �
This gives us an important corollary.

Corollary 15. Let p 2 F [t]. If deg (p) = k; then p has no more than k roots.

Proof. We prove this by induction. When k = 0 or 1 there is nothing to
prove. If p has a root � 2 F; then p = (t� �) q; where deg (q) < deg (p) : Thus q
has no more than deg (q) roots. In addition we have that � 6= � is a root of p if
and only if it is a root of q: Thus p cannot have more than 1 + deg (q) � deg (p)
roots. �

In the next proposition we show that two polynomials always have a greatest
common divisor.

Proposition 9. Let p; q 2 F [t] ; then there is a unique monic polynomial
d = gcd fp; qg with the property that if d1 divides both p and q then d1 divides d:
Moreover, there are r; s 2 F [t] such that d = pr + qs:

Proof. Let d be a monic polynomial of smallest degree such that d = ps1+qs2:
It is clear that any polynomial d1 that divides p and q must also divide d: So we must
show that d divides p and q:We show more generally that d divides all polynomials
of the form d0 = ps01 + qs02: For such a polynomial we have d

0 = du + r where
deg (r) < deg (d) : This implies

r = d0 � du
= p (s01 � us1) + q (s02 � us2) :

It must follow that r = 0 as we could otherwise �nd a monic polynomial of the
form ps001 + qs002 of degree < deg (d). Thus d divides d

0: In particular d must divide
p = p � 1 + q � 0 and q = p � 0 + q � 1:

To check uniqueness assume d1 is a monic polynomial with the property that
any polynomial that divides p and q also divides d1: This means that d divides
d1 and also that d1 divides d: Since both polynomials are monic this shows that
d = d1: �

We can more generally show that for any �nite collection p1; :::; pn of polyno-
mials there is a greatest common divisor

d = gcd fp1; :::; png :
As in the above proposition the polynomial d is a monic polynomial of smallest
degree such that

d = p1s1 + � � �+ pnsn:
Moreover it has the property that any polynomial that divides p1; :::; pn also divides
d: The polynomials p1; :::; pn 2 F [t] are said to be relatively prime or have no
common factors if the only monic polynomial that divides p1; :::; pn is 1: In other
words gcd fp1; :::; png = 1:
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We can also show that two polynomials have a least common multiple.

Proposition 10. Let p; q 2 F [t] ; then there is a unique monic polynomial
m = lcm fp; qg with the property that if p and q divide m1 then m divides m1.

Proof. Let m be the monic polynomial of smallest degree that is divisible by
both p and q: Note that such polynomials exists as pq is divisible by both p and
q: Next suppose that p and q divide m1: Since deg (m1) � deg (m) we have that
m1 = sm + r with deg (r) < deg (m) : Since p and q divide m1 and m; they must
also divide m1 � sm = r: As m has the smallest degree with this property it must
follow that r = 0: Hence m divides m1: �

A monic polynomial p 2 F [t] of degree � 1 is said to be prime or irreducible
if the only monic polynomials from F [t] that divide p are 1 and p: The simplest
irreducible polynomials are the linear ones t � �: If the �eld F = C; then all
irreducible polynomials are linear. While if the �eld F = R; then the only other
irreducible polynomials are the quadratic ones t2+�t+� with negative discriminant
D = �2 � 4� < 0: These two facts are not easy to prove and depend on the
�Fundamental Theorem of Algebra�which we discuss below.

In analogy with the prime factorization of integers we also have a prime fac-
torization of polynomials. Before establishing this decomposition we need to prove
a very useful property for irreducible polynomials.

Lemma 12. Let p 2 F [t] be irreducible. If p divides q1 � q2; then p divides either
q1 or q2:

Proof. Let d1 = gcd (p; q1) : Since d1 divides p it follows that d1 = 1 or d1 = p:
In the latter case d1 = p divides q1 so we are �nished. If d1 = 1; then we can write
1 = pr + q1s: In particular

q2 = q2pr + q2q1s:

Here we have that p divides q2q1 and p: Thus it also divides

q2 = q2pr + q2q1s:

�

Theorem 16. (Unique Factorization of Polynomials) Let p 2 F [t] be a monic
polynomial, then p = p1 � � � pk is a product of irreducible polynomials. Moreover,
except for rearranging these polynomials this factorization is unique.

Proof. We can prove this result by induction on deg (p) : If p is only divisible
by 1 and p; then p is irreducible and we are �nished. Otherwise p = q1 � q2; where
q1 and q2 are monic polynomials with deg (q1) ;deg (q2) < deg (p) : By assumption
each of these two factors can be decomposed into irreducible polynomials, hence we
also get such a decomposition for p:

For uniqueness assume that p = p1 � � � pk = q1 � � � ql are two decompositions
of p into irreducible factors. Using induction again we see that it su¢ ces to show
that p1 = qi for some i: The previous lemma now shows that p1 must divide q1 or
q2 � � � ql: In the former case it follows that p1 = q1 as q1 is irreducible. In the latter
case we get again that p1 must divide q2 or q3 � � � ql: Continuing in this fashion it
must follow that p1 = qi for some i: �
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If all the irreducible factors of a monic polynomial p 2 F [t] are linear, then we
say that that p splits. Thus p splits if and only if

p (t) = (t� �1) � � � (t� �k)

for �1; :::; �k 2 F:
Finally we show that all complex polynomials have a root. It is curious that

while this theorem is algebraic in nature the proof is analytic. There are many com-
pletely di¤erent proofs of this theorem including ones that are far more algebraic.
The one presented here, however, seems to be the most elementary.

Theorem 17. (The Fundamental Theorem of Algebra) Any complex polyno-
mial of degree � 1 has a root.

Proof. Let p (z) 2 C [z] have degree n � 1: Our �rst claim is that we can �nd
z0 2 C such that jp (z)j � jp (z0)j for all z 2 C: To see why jp (z)j has to have a
minimum we �rst observe that

p (z)

zn
=

anz
n + an�1z

n�1 + � � �+ a1z + a0
zn

= an + an�1
1

z
+ � � �+ a1

1

zn�1
+ a0

1

zn
! an as z !1:

Since an 6= 0; we can therefore choose R > 0 so that

jp (z)j � janj
2
jzjn for jzj � R:

By possibly increasing R further we can also assume that

janj
2
jRjn � jp (0)j :

On the compact set �B (0; R) = fz 2 C : jzj � Rg we can now �nd z0 such that
jp (z)j � jp (z0)j for all z 2 �B (0; R) : By our assumptions this also holds when
jzj � R since in that case

jp (z)j � janj
2
jzjn

� janj
2
jRjn

� jp (0)j
� jp (z0)j :

Thus we have found our global minimum for jp (z)j :
We now de�ne a new polynomial of degree n � 1

q (z) =
p (z + z0)

p (z0)
:
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This polynomial satis�es

q (0) =
p (z0)

p (z0)
= 1;

jq (z)j =

����p (z + z0)p (z0)

����
�

����p (z0)p (z0)

����
= 1

Thus
q (z) = 1 + bkz

k + � � �+ bnzn

where bk 6= 0: We can now investigate what happens to q (z) for small z. We �rst
note that

q (z) = 1 + bkz
k + bk+1z

k+1 + � � �+ bnzn

= 1 + bkz
k +

�
bk+1z + � � �+ bnzn�k

�
zk

where �
bk+1z � � �+ bnzn�k

�
! 0 as z ! 0:

If we write z = rei� and choose � so that

bke
ik� = � jbkj

then

jq (z)j =
��1 + bkzk + �bk+1z � � �+ bnzn�k� zk��

=
��1� jbkj rk + �bk+1z � � �+ bnzn�k� rkeik���

� 1� jbkj rk +
���bk+1z � � �+ bnzn�k� rkeik���

= 1� jbkj rk +
��bk+1z � � �+ bnzn�k�� rk

� 1� jbkj
2
rk

as long as r is chosen so small that 1� jbkj rk > 0 and
��bk+1z � � �+ bnzn�k�� � jbkj

2 :

This, however, implies that
��q �rei���� < 1 for small r: We have therefore arrived at

a contradiction. �

2. Linear Di¤erential Equations�

In this section we shall study linear di¤erential equations. Everything we have
learned about linear independence, bases, special matrix representations etc. will
be extremely useful when trying to solve such equations. In fact we shall in several
section of this text see that virtually every development in linear algebra can be
used to understand the structure of solutions to linear di¤erential equations. It
is possible to skip this section if one doesn�t want to be bothered by di¤erential
equations while learning linear algebra.

We start with systems of di¤erential equations:

_x1 = a11x1 + � � �+ a1mxm + b1
...

...
...

_xm = an1x1 + � � �+ anmxm + bn
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where aij ; bi 2 C1 ([a; b] ;C) (or just C1 ([a; b] ;R)) and the functions xj : [a; b]!
C are to be determined. We can write the system in matrix form and also rearrange
it a bit to make it look like we are solving L (x) = b: To do this we use

x =

264 x1
...
xm

375 ; b =
264 b1

...
bn

375 ; A =
264 a11 � � � a1m

...
. . .

...
an1 � � � anm

375
and de�ne

L : C1 ([a; b] ;Cm)! C1 ([a; b] ;Cn)
L (x) = _x�Ax:

The equation L (x) = 0 is called the homogeneous system. We note that the follow-
ing three properties can be used as a general outline for what to do.

(1) L (x) = b can be solved if and only if b 2 im (L) :
(2) If L (x0) = b and x 2 ker (L) ; then L (x+ x0) = b:
(3) If L (x0) = b and L (x1) = b; then x0 � x1 2 ker (L) :
The speci�c implementation of actually solving the equations, however, is quite

di¤erent from what we did with systems of (algebraic) equations.
First of all we only consider the case where n = m: This implies that for given

t0 2 [a; b] and x0 2 Cn the initial value problem
L (x) = b;

x (t0) = x0

has a unique solution x 2 C1 ([a; b] ;Cn) : We shall not prove this result in this
generality, but we shall eventually see why this is true when the matrix A has
entries that are constants rather than functions. As we learn more about linear
algebra we shall revisit this problem and slowly try to gain a better understanding
of it. For now let us just note an important consequence.

Theorem 18. The complete collection of solutions to

_x1 = a11x1 + � � �+ a1nxn + b1
...

...
...

_xn = an1x1 + � � �+ annxn + bn
can be found by �nding one solution x0 and then adding it to the solutions of the
homogeneous equation L (z) = 0; i.e.,

x = z + x0;

L (z) = 0;

moreover dim (ker (L)) = n:

Some particularly interesting and important linear equations are the nth order
equations

Dnx+ an�1D
n�1x+ � � �+ a1Dx+ a0x = b;

where Dkx is the kth order derivative of x: If we assume that an�1; :::; a0; b 2
C1 ([a; b] ;C) and de�ne

L : C1 ([a; b] ;C)! C1 ([a; b] ;C)
L (x) =

�
Dn + an�1D

n�1 + � � �+ a1D + a0
�
(x) ;
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then we have a nice linear problem just as in the previous cases of linear systems
of di¤erential or algebraic equations. The problem of solving L (x) = b can also be
reinterpreted as a linear system of di¤erential equations by de�ning

x1 = x; x2 = Dx; :::; xn = Dn�1x

and then considering the system

_x1 = x2
_x2 = x3
...

...
...

_xn = �an�1xn � � � � � a1x2 � a0x1 + bn
This won�t help us in solving the desired equation, but it does tells us that the
initial value problem

L (x) = b;

x (t0) = c0; Dx (t0) = c1; :::; D
n�1x (t0) = cn�1;

has a unique solution and hence the above theorem can be paraphrased.

Theorem 19. The complete collection of solutions to

Dnx+ an�1D
n�1x+ � � �+ a1Dx+ a0x = b

can be found by �nding one solution x0 and then adding it to the solutions of the
homogeneous equation L (z) = 0; i.e.,

x = z + x0;

L (z) = 0;

moreover dim (ker (L)) = n:

It is not hard to give a complete account of how to solve the homogeneous
problem L (x) = 0 when a0; :::; an�1 2 C are constants. Let us start with n = 1:
Then we are trying to solve

Dx+ a0x = _x+ a0x = 0:

Clearly x = exp (�a0t) is a solution and the complete set of solutions is
x = c exp (�a0t) ; c 2 C:

The initial value problem

_x+ a0x = 0;

x (t0) = c0

has the solution
x = c0 exp (�a0 (t� t0)) :

The trick to solving the higher order case is to note that we can rewrite L as

L = Dn + an�1D
n�1 + � � �+ a1D + a0

= p (D) :

This makes L look like a polynomial where D is the variable. The corresponding
polynomial

p (t) = tn + an�1t
n�1 + � � �+ a1t+ a0

is called the characteristic polynomial. The idea behind solving these equations
comes from
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Proposition 11. (The Reduction Principle) If q (t) = tm+bm�1t
m�1+� � �+b0

is a polynomial that divides p (t) = tn+an�1t
n�1+ � � �+a1t+a0; then any solution

to q (D) (x) = 0 is also a solution to p (D) (x) = 0:

Proof. This simply hinges of observing that p (t) = r (t) q (t) ; then p (D) =
r (D) q (D) : So by evalutaing the latter on x we get p (D) (x) = r (D) (q (D) (x)) =
0: �

The simplest factors are, of course, the linear factors t � � and we know that
the solutions to

(D � �) (x) = Dx� �x = 0
are given by x (t) = C exp (�t) : This means that we should be looking for roots to
p (t) : These roots are called eigenvalues or characteristic values. The Fundamental
Theorem of Algebra asserts that any polynomial p 2 C [t] can be factored over the
complex numbers

p (t) = tn + an�1t
n�1 + � � �+ a1t+ a0

= (t� �1)k1 � � � (t� �m)km :

Here the roots �1; :::; �m are assumed to be distinct, each occurs with multiplicity
k1; :::; km, and k1 + � � �+ km = n:

The original equation

L = Dn + an�1D
n�1 + � � �+ a1D + a0

then factors

L = Dn + an�1D
n�1 + � � �+ a1D + a0

= (D � �1)k1 � � � (D � �m)km

and we reduce the original problem to solving the equations

(D � �1)k1 (x) = 0;

...

(D � �m)km (x) = 0:

Note that if we had not insisted on using the more abstract and less natural
complex numbers we would not have been able to make the reduction so easily. If
we are in a case where the di¤erential equation is real and there is a good physical
reason for keeping solutions real as well, then we can still solve it as if it were
complex and then take real and imaginary parts of the complex solutions to get
real ones. It would seem that the n complex solutions would then lead to 2n real
ones. This is not really the case. First observe that each real eigenvalue � only gives
rise to a one parameter family of real solutions c exp (� (t� t0)). As for complex
eigenvalues we know that real polynomials have the property that complex roots
come in conjugate pairs. Then we note that exp (� (t� t0)) and exp

�
�� (t� t0)

�
up

to sign have the same real and imaginary parts and so these pairs of eigenvalues
only lead to a two parameter family of real solutions which if � = �1 + i�2 looks
like

c exp (�1 (t� t0)) cos (�2 (t� t0)) + d exp (�1 (t� t0)) sin (�2 (t� t0))
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Let us return to the complex case again. If m = n and k1 = � � � = km = 1; we
simply get n �rst order equations and we see that the complete set of solutions to
L (x) = 0 is given by

x = �1 exp (�1t) + � � �+ �n exp (�nt) :
It should be noted that we need to show that exp (�1t) ; :::; exp (�nt) are linearly
independent in order to show that we have found all solutions. This was discussed
in �Linear Independence" in chapter 1 and will also be established below in �Diag-
onalizability�.

With a view towards solving the initial value problem we rewrite the solution
as

x = d1 exp (�1 (t� t0)) + � � �+ dn exp (�n (t� t0)) :
To solve the initial value problem requires di¤erentiating this expression several
times and then solving

x (t0) = d1 + � � �+ dn;
Dx (t0) = �1d1 + � � �+ �ndn;

...

Dn�1x (t0) = �n�11 d1 + � � �+ �n�1n dn

for d1; :::; dn: In matrix form this becomes26664
1 � � � 1
�1 � � � �n
...

. . .
...

�n�11 � � � �n�1n

37775
264 d1

...
dn

375 =
26664

x (t0)
_x (t0)
...

x(n�1) (t0)

37775
In �Linear Independence� we saw that this matrix has rank n if �1; :::; �n are
distinct. Thus we can solve for the ds in this case.

When roots have multiplicity things get a little more complicated. We �rst
need to solve the equation

(D � �)k (x) = 0:
One can check that the k functions exp (�t) ; t exp (�t) ; :::; tk�1 exp (�t) are so-
lutions to this equation. One can also prove that they are linearly independent
using that 1; t; :::; tk�1 are linearly independent. This will lead us to a complete
set of solutions to L (x) = 0 even when we have multiple roots. The problem of
solving the initial value is somewhat more involved due to the problem of taking
derivatives of tl exp (�t) : This can be simpli�ed a little by considering the solutions
exp (� (t� t0)) ; (t� t0) exp (� (t� t0)) ; :::; (t� t0)k�1 exp (� (t� t0)) :

For the sake of illustration let us consider the simplest case of trying to solve
(D � �)2 (x) = 0: The complete set of solutions can be parametrized as

x = d1 exp (� (t� t0)) + d2 (t� t0) exp (� (t� t0))
Then

Dx = �d1 exp (� (t� t0)) + (1 + � (t� t0)) d2 exp (� (t� t0))
Thus we have to solve

x (t0) = d1

Dx (t0) = �d1 + d2:
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This leads us to the system�
1 0
� 1

� �
d1
d2

�
=

�
x (t0)
Dx (t0)

�
If � = 0 we are �nished. Otherwise we can multiply the �rst equation by � and
subtract it from the second to obtain�

1 0
0 1

� �
d1
d2

�
=

�
x (t0)

Dx (t0)� �x (t0)

�
Thus the solution to the initial value problem is

x = x (t0) exp (� (t� t0)) + (Dx (t0)� �x (t0)) (t� t0) exp (� (t� t0)) :
A similar method of �nding a characteristic polynomial and its roots can also

be employed in solving linear systems of equations as well as homogeneous systems
of linear di¤erential with constant coe¢ cients. The problem lies in deciding what
the characteristic polynomial should be and what its roots mean for the system.
This will be studied in subsequent sections and chapters. In the last three sections
of this chapter we shall also see that systems of �rst order di¤erential equations
can solved using our knowledge of higher order equations.

For now let us see how one can approach systems of linear di¤erential equations
from the point of view of �rst trying to de�ne the eigenvalues. We are considering
the homogeneous problem

L (x) = _x�Ax = 0;
where A is an n� n matrix with real or complex numbers as entries. If the system
is decoupled, i.e., _xi depends only on xi then we have n �rst order equations that
can be solved as above. In this case the entries that are not on the diagonal of A
are zero. A particularly simple case occurs when A = �1Cn for some �: In this case
the general solution is given by

x = x0 exp (� (t� t0)) :
We now observe that for �xed x0 this is still a solution to the general equation
_x = Ax provided only that Ax0 = �x0: Thus we are lead to seek pairs of scalars �
and vectors x0 such that Ax0 = �x0: If we can �nd such pairs where x0 6= 0; then
we call � an eigenvalue for A and x0 and eigenvector for �: Therefore, if we can
�nd a basis v1; :::; vn for Rn or Cn of eigenvectors with Av1 = �1v1; :::; Avn = �nvx,
then we have that the complete solution must be

x = v1 exp (�1 (t� t0)) c1 + � � �+ vn exp (�n (t� t0)) cn:
The initial value problem L (x) = 0; x (t0) = x0 is then handled by solving

v1c1 + � � �+ vncn =
�
v1 � � � vn

� 264 c1
...
cn

375 = x0:

Since v1; :::; vn was assumed to be a basis we know that this system can be solved.
Gauss elimination can then be used to �nd c1; :::; cn:

What we accomplished by this change of basis was to decouple the system in
a di¤erent coordinate system. One of the goals in the study of linear operators is
to �nd a basis that makes the matrix representation of the operator as simple as
possible. As we have just seen this can then be used to great e¤ect in solving what
might appear to be a rather complicated problem. Even so it might not be possible
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to �nd the desired basis of eigenvectors. This happens if we consider the second
order equation (D � �)2 = 0 and convert it to a system�

_x1
_x2

�
=

�
0 1

��2 2�

� �
x1
x2

�
:

Here the general solution to (D � �)2 = 0 is of the form
x = x1 = c1 exp (�t) + c2t exp (�t)

so
x2 = _x1 = c1� exp (�t) + c2 (�t+ 1) exp (�t) :

This means that�
x1
x2

�
= c1

�
1
�

�
exp (�t) + c2

�
t

�t+ 1

�
exp (�t) :

Since we cannot write this in the form�
x1
x2

�
= c1v1 exp (�1t) + c2v2 exp (�2t)

there cannot be any reason to expect that a basis of eigenvectors can be found even
for the simple matrix

A =

�
0 1
0 0

�
:

Below we shall see that any square matrix and indeed any linear operator on a
�nite dimensional vector space has a characteristic polynomial whose roots are the
eigenvalues of the map. Having done that we shall spend considerable time on trying
to determine exactly what properties of the linear map further guarantees that it
admits a basis of eigenvectors. In �Cyclic Subspaces�, �The Frobenius Canonical
Form�and �The Jordan Canonical Form�below we shall show that any system of
equations can be transformed into a new system that looks like several uncoupled
higher order equations.

There is another rather intriguing way of solving linear di¤erential equations by
reducing them to recurrences. We will emphasize higher order equations, it works
equally well with systems. The goal is to transform the di¤erential equation:

Dnx+ an�1D
n�1x+ � � �+ a1Dx+ a0x = p (D) (x) = 0

into something that can be solved using combinatorial methods.
Assume that x is given by its MacLaurin expansion

x (t) =
1X
k=0

�
Dkx

�
(0)

tk

k!

=
1X
k=0

ck
tk

k!

The derivative is then given by

Dx =
1X
k=1

ck
tk�1

(k � 1)!

=
1X
k=0

ck+1
tk

k!



100 2. LINEAR OPERATORS

and more generally

Dlx =
1X
k=0

ck+l
tk

k!
:

Thus the derivative of x is simply a shift in the index for the sequence (ck) : The
di¤erential equation gets to look like

Dnx+ an�1D
n�1x+ � � �+ a1Dx+ a0x

=
1X
k=0

(ck+n + an�1ck+n�1 + � � �+ a1ck+1 + a0ck)
tk

k!
:

From this we can conclude that x is a solution if and only if the sequence ck solves
the linear nth order recurrence

ck+n + an�1ck+n�1 + � � �+ a1ck+1 + a0ck = 0;
or

ck+n = � (an�1ck+n�1 + � � �+ a1ck+1 + a0ck) :
For such a sequence it is clear that we need to know the initial values c0; :::; cn�1
in order to �nd the whole sequence. This corresponds to the initial value problem
for the corresponding di¤erential equation as ck =

�
Dkx

�
(0) :

The correspondence between systems _x = Ax and recurrences of vectors cn+1 =
Acn comes about by assuming that the solution to the di¤erential equation looks
like

x (t) =

1X
n=0

cn
tn

n!
;

cn 2 Cn

2.1. Exercises.
(1) Find the solution to the di¤erential equations with the general initial

values: x (t0) = x0; _x (t0) = _x0; and �x (t0) = �x0:
(a)

...
x � 3�x+ 3 _x� x = 0:

(b)
...
x � 5�x+ 8 _x� 4x = 0:

(c)
...
x + 6�x+ 11 _x+ 6x = 0:

(2) Find the complete solution to the initial value problems.

(a)
�
_x
_y

�
=

�
0 2
1 3

� �
x
y

�
; where

�
x (t0)
y (t0)

�
=

�
x0
y0

�
:

(b)
�
_x
_y

�
=

�
0 1
1 2

� �
x
y

�
; where

�
x (t0)
y (t0)

�
=

�
x0
y0

�
:

(3) Find the real solution to the di¤erential equations with the general initial
values: x (t0) = x0; _x (t0) = _x0; and �x (t0) = �x0 in the third order cases.
(a) �x+ x = 0:
(b)

...
x + _x = 0:

(c) �x� 6 _x+ 25x = 0:
(d)

...
x � 5�x+ 19 _x+ 25 = 0:

(4) Consider the vector space C1 ([a; b] ;Cn) of in�nitely di¤erentiable curves
in Cn and let z1; :::; zn 2 C1 ([a; b] ;Cn) :
(a) If we can �nd t0 2 [a; b] so that the vectors z1 (t0) ; :::; zn (t0) 2 Cn are

linearly independent, then the functions z1; :::; zn 2 C1 ([a; b] ;Cn)
are also linearly independent.
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(b) Find a linearly independent pair z1; z2 2 C1
�
[a; b] ;C2

�
so that

z1 (t) ; z2 (t) 2 C2 are linearly dependent for all t 2 [a; b] :
(c) Assume now that each z1; :::; zn solves the linear di¤erential equation

_x = Ax. Show that if z1 (t0) ; :::; zn (t0) 2 Cn are linearly dependent
for some t0; then z1; :::; zn 2 C1 ([a; b] ;Cn) are linearly dependent
as well.

(5) Let p (t) = (t� �1) � � � (t� �n) ; where we allow multiplicities among the
roots.
(a) Show that (D � �) (x) = f (t) has

x = exp (�t)

Z t

0

exp (��s) f (s) ds

as a solution.
(b) Show that a solution x to p (D) (x) = f can be found by successively

solving

(D � �1) (z1) = f;

(D � �2) (z2) = z1;

...

(D � �n) (zn) = zn�1:

(6) Show that the initial value problem

_x = Ax;

x (t0) = x0

can be solved �explicitly� if A is upper (or lower) triangular. This holds
even in the case where the entries of A and b are functions of t:

(7) Assume that x (t) is a solution to _x = Ax; where A 2 Matn�n (C) :
(a) Show that the phase shifts x! (t) = x (t+ !) are also solutions.
(b) If the vectors x (!1) ; :::; x (!n) form a basis for Cn; then all solutions

to _x = Ax are linear combinations of the phase shifted solutions
x!1 ; :::; x!n :

(8) Assume that x is a solution to p (D) (x) = 0; where p (D) = Dn + � � � +
a1D + a0:
(a) Show that the phase shifts x! (t) = x (t+ !) are also solutions.
(b) If the vectors26664

x (!1)
Dx (!1)

...
Dn�1x (!1)

37775 ; :::;
26664

x (!n)
Dx (!n)

...
Dn�1x (!n)

37775
form a basis for Cn; then all solutions to p (D) (x) = 0 are linear
combinations of the phase shifted solutions x!1 ; :::; x!n :

(9) Let p (t) = (t� �1) � � � (t� �n) : Show that the higher order equation
L (y) = p (D) (y) = 0 can be made into a system of equations _x�Ax = 0;
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where

A =

266664
�1 1 0

0 �2
. . .
. . . 1

0 �n

377775
by choosing

x =

26664
y

(D � �1) y
...

(D � �1) � � � (D � �n�1) y

37775 :
(10) Show that p (t) exp (�t) solves (D � �)k x = 0 if p (t) 2 C [t] and deg (p) �

k � 1: Conclude that ker
�
(D � �)k

�
contains a k-dimensional subspace.

(11) Let V = span fexp (�1t) ; :::; exp (�nt)g ; where �1; :::; �n 2 C are distinct.
(a) Show that exp (�1t) ; :::; exp (�nt) form a basis for V: Hint: One way

of doing this is to construct a linear isomorphism

L : V ! Cn

L (f) = (f (t1) ; :::; f (tn))

by selecting suitable points t1; :::; tn 2 R depending on �1; :::; �n 2 C
such that L (exp (�it)) ; i = 1; :::; n form a basis.

(b) Show that if x 2 V; then Dx 2 V:
(c) Compute the matrix representation for the linear operator D : V !

V with respect to exp (�1t) ; :::; exp (�nt) :
(d) More generally, show that p (D) : V ! V; where p (D) = akD

k +
� � �+ a1D + a01V :

(e) Show that p (D) = 0 if and only if �1; :::; �n are all roots of p (t) :
(12) Let p 2 C [t] and consider ker (p (D)) = fx : p (D) (x) = 0g ; i.e., it is the

space of solutions to p (D) = 0:
(a) Assuming unique solutions to initial values problems show that

dimC ker (p (D)) = deg p = n:

(b) Show that D : ker (p (D))! ker (p (D)) :
(c) Show that q (D) : ker (p (D))! ker (p (D)) for any polynomial q (t) 2

C [t] :
(d) Show that ker (p (D)) has a basis for the form x;Dx; :::;Dn�1x: Hint:

Let x be the solution to p (D) (x) = 0 with the initial values x (0) =
Dx (0) = � � � = Dn�2x (0) = 0; and Dn�1x (0) = 1:

(13) Let p 2 R [t] and consider
kerR (p (D)) = fx : R! R : p (D) (x) = 0g ;
kerC (p (D)) = fz : R! C : p (D) (z) = 0g

i.e., the real valued, respectively, complex valued solutions.
(a) Show that x 2 kerR (p (D)) if and only if x = Re (z) where z 2

kerC (p (D)) :
(b) Show that dimC ker (p (D)) = deg p = dimR ker (p (D)) :
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3. Eigenvalues

We are now ready to give the abstract de�nitions for eigenvalues and eigenvec-
tors. Consider a linear operator L : V ! V on a vector space over F: If we have
a scalar � 2 F and a vector x 2 V � f0g so that L (x) = �x; then we say that �
is an eigenvalue of L and x is an eigenvector for �: If we add zero to the space of
eigenvectors for �, then it can be identi�ed with the subspace

ker (L� �1V ) = fx 2 V : L (x)� �x = 0g � V:
This is also called the eigenspace for �: In many texts this space is often denoted

E� = ker (L� �1V ) :
At this point we can give a procedure for computing the eigenvalues/vectors

using Gauss elimination. The more standard method using determinants can be
found in virtually every other book on linear algebra. We start by considering a
matrix A 2 Matn�n (F) : If we wish to �nd an eigenvalue � for A; then we need to
determine when there is a nontrivial solution to (A� �1Fn) (x) = 0: In other words,
the augmented system 264 �11 � � � � � �1n

...
. . .

...
�n1 � � � �nn � �

0
...
0

375
should have a nontrivial solution. This is something we know how to deal with
using Gauss elimination. The only complication is that if � is simply an abstract
number, then it can be a bit tricky to decide when we are allowed to divide by
expression that involve �:

Before discussing this further let us consider some examples.

Example 49. Let

A =

2664
0 1 0 0
�1 0 0 0
0 0 0 1
0 0 1 0

3775
Row reduction tells us:

A� �1F4 =

2664
�� 1 0 0
�1 �� 0 0
0 0 �� 1
0 0 1 ��

0
0
0
0

3775 interchange rows 1 and 2,

interchange rows 3 and 4,2664
�1 �� 0 0
�� 1 0 0
0 0 1 ��
0 0 � 1

0
0
0
0

3775 Use row 1 to eliminate �� in row 2

Use row 3 to eliminate � in row 42664
�1 �� 0 0

0 1 + �2 0 0
0 0 1 ��
0 0 0 1� �2

0
0
0
0

3775
We see that this system has nontrivial solutions precisely when 1+�2 = 0 or 1��2 =
0: Thus the eigenvalues are � = �i and � = �1: Note that the two conditions can
be multiplied into one characteristic equation of degree 4:

�
1 + �2

� �
1� �2

�
= 0:
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Having found the eigenvalues we then need to insert them into the system and �nd
the eigenvectors. Since the system has already been reduced this is quite simple.
First let � = �i so that we have2664

1 �i 0 0
0 0 0 0
0 0 1 �i
0 0 0 2

0
0
0
0

3775
Thus we get 2664

1
i
0
0

3775 ! � = i and

2664
i
1
0
0

3775 ! � = �i

Then we let � = �1 and consider2664
1 �1 0 0
0 2 0 0
0 0 1 �1
0 0 0 0

0
0
0
0

3775
to get 2664

0
0
1
1

3775$ 1 and

2664
0
0
�1
1

3775$ �1
Example 50. Let

A =

264 �11 � � � �1n
...

. . .
...

0 � � � �nn

375
be upper triangular, i.e., all entries below the diagonal are zero: �ij = 0 if i > j:
Then we are looking at 264 �11 � � � � � �1n

...
. . .

...
0 � � � �nn � �

0
0
0

375 :
Note again that we don�t perform any divisions so as to make the diagonal entries
1. This is because if they are zero we evidently have a nontrivial solution and that is
what we are looking for. Therefore, the eigenvalues are � = �11; :::; �nn: Note that
the eigenvalues are precisely the roots of the polynomial that we get by multiplying
the diagonal entries. This polynomial is going to be the characteristic polynomial
of A:

In order to help us �nding roots we have a few useful facts.

Proposition 12. Let A 2 Matn�n (C) and

�A (t) = tn + an�1t
n�1 + � � �+ a1t+ a0 = (t� �1) � � � (t� �n) :

(1) trA = �1 + � � �+ �n = �an�1:
(2) �1 � � ��n = (�1)n a0:
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(3) If �A (t) 2 R [t] and � 2 C is a root, then �� is also a root. In particular
the number of real roots is even, respectively odd, if n is even, respectively
odd.

(4) If �A (t) 2 R [t] ; n is even, and a0 < 0; then there are at least two real
roots, one negative and one positive.

(5) If �A (t) 2 R [t] and n is odd then there is at least one real root, whose
sign is the opposite of a0:

(6) If �A (t) 2 Z [t], then all rational roots are in fact integers that divide a0:

Proof. The proofs of 3 and 6 are basic algebraic properties for polynomials.
Property 6 was already covered in the previous section. The proofs of 4 and 5
follow from the intermediate value theorem. Simply note that �A (0) = a0 and that
�A (t)!1 as t!1 while (�1)n �A (t)!1 as t! �1:

The facts that

�1 + � � �+ �n = �an�1;
�1 � � ��n = (�1)n a0

follow directly from the equation

tn + an�1t
n�1 + � � �+ a1t+ a0 = (t� �1) � � � (t� �n) :

Finally the relation trA = �1+ � � �+�n will be established when we can prove that
complex matrices are similar to upper triangular matrice. In other words we will
show that one can �nd B 2 Gln (C) such that B�1AB is upper triangular. We then
observe that A and B�1AB have the same eigenvalues as Ax = �x if and only if
B�1AB

�
B�1x

�
= �

�
B�1x

�
: However as the eigenvalues for the upper triangular

matrix B�1AB are precisely the diagonal entries we see that

�1 + � � �+ �n = tr
�
B�1AB

�
= tr

�
ABB�1

�
= tr (A) :

Another proof of trA = �an�1 that works for all �elds is presented below in
the exercises to �The Frobenius Canonical Form�.

For 6 let p=q be a rational root in reduced form, then�
p

q

�n
+ � � �+ a1

�
p

q

�
+ a0 = 0;

and

0 = pn + � � �+ a1pqn�1 + a0qn

= pn + q
�
an�1p

n�1 + � � �+ a1pqn�2 + a0qn�1
�

= p
�
pn�1 + � � �+ a1qn�1

�
+ a0q

n:

Thus q divides pn and p divides a0qn: Since p and q have no divisors in common
the result follows. �

Example 51. Let

A =

24 1 2 4
�1 0 2
3 �1 5

35 ;
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and perform row operations on24 1� � 2 4
�1 �� 2
3 �1 5� �

0
0
0

35 Change sign in row 2
Interchange rows 1 and 224 1 � �2

1� � 2 4
3 �1 5� �

0
0
0

35
Use row 1 to cancel 1� � in row 224 1 � �2

0 2� �+ �2 6� 2�
0 �1� 3� 11� �

0
0
0

35
Interchange rows 2 and 324 1 � �2

0 �1� 3� 11� �
0 2� �+ �2 6� 2�

0
0
0

35 Change sign in row 2,
use row 2 to cancel 2� �+ �2 in row 3
this requires that we have 1 + 3� 6= 0!24 1 � �2

0 1 + 3� �11 + �
0 0 6� 2�� 2��+�2

1+3� (�11 + �)

0
0
0

35
Common denominator for row 324 1 � �2

0 1 + 3� �11 + �
0 0 �28�3��6�2+�3

1+3�

0
0
0

35
Note that we are not allowed to have 1 + 3� = 0 in this formula. If 1 + 3� = 0;
then we note that 2� �+ �2 6= 0 and 11� � 6= 0 so that the third display24 1 � �2

0 2� �+ �2 6� 2�
0 �1� 3� 11� �

0
0
0

35
guarantees that there are no nontrivial solutions in that case. This means that our
analysis is valid and that multiplying the diagonal entries will get us the charac-
teristic polynomial �28 � 3� � 6�2 + �3. We note �rst that 7 is a root of this
polynomial. We can then �nd the other two roots by dividing

�28� 3�� 6�2 + �3

�� 7 = �2 + �+ 4

and using the quadratic formula: � 12 +
1
2 i
p
15;� 12 �

1
2 i
p
15:

The characteristic polynomial of a matrix A 2 Matn�n (F) is a polynomial
�A (�) 2 F [�] of degree n such that all eigenvalues of A are roots of �A: In addition
we scale the polynomial so that the leading term is �n; i.e., the polynomial is monic.
To get a better understanding of the process that leads us to the characteristic
polynomial we study the 2 � 2 and 3 � 3 cases as well as a few specialized n � n
situations.

Starting with A 2 Mat2�2 (F) we investigate

A� �1F2 =
�
�11 � � �12
�21 �22 � �

�
:
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If �21 = 0; the matrix is in uppertriangular form and the characteristic polynomial
is

�A = (�11 � �) (�22 � �)
= �2 � (�11 + �22)�+ �11�22:

If �21 6= 0; then we switch the �rst and second row and then eliminate the bottom
entry in the �rst column:�

�11 � � �12
�21 �22 � �

�
�

�21 �22 � �
�11 � � �12

�
�
�21 �22 � �
0 �12 � 1

�21
(�11 � �) (�22 � �)

�
Multiplying the diagonal entries gives

�21�12 � (�11 � �) (�22 � �)
= ��2 + (�11 + �22)�� �11�22 + �21�12:

In both cases the characteristic polynomial is given by

�A = �2 � (�11 + �22)�+ (�11�22 � �21�12)
= �2 � tr (A)�+ det (A) :

We now make an attempt at the case where A 2 Mat3�3 (F) : Thus we consider

A� �1F3 =

24 �11 � � �12 �13
�21 �22 � � �23
�31 �32 �33 � �

35
When �21 = �31 = 0 there is nothing to do in the �rst column and we are left with
the bottom right 2� 2 matrix to consider. This is done as above.

If �21 = 0 and �31 6= 0; then we switch the �rst and third rows and eliminate
the last entry in the �rst row. This will look like24 �11 � � �12 �13

0 �22 � � �23
�31 �32 �33 � �

35
24 �31 �32 �33 � �

0 �22 � � �23
�11 � � �12 �13

35
24 �31 �32 �33 � �

0 �22 � � �23
0 ��+ � p (�)

35
where p has degree 2. If ��+� is proportional to �22��; then we can eliminate it to
get an upper triangular matrix. Otherwise we can still eliminate �� by multiplying
the second row by � and adding it to the third row. This leads us to a matrix of
the form 24 �31 �32 �33 � �

0 �22 � � �23
0 �0 p0 (�)

35
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where �0 is a scalar and p0 a polynomial of degree 2. If �0 = 0 we are �nished.
Otherwise we switch the second and third rows and elimate.

If �21 6= 0; then we switch the �rst two rows and cancel below the diagonal in
the �rst column. This gives us something like

24 �11 � � �12 �13
�21 �22 � � �23
�31 �32 �33 � �

35
24 �21 �22 � � �23
�11 � � �12 �13
�31 �32 �33 � �

35
24 �21 �22 � � �23

0 p (�) �013
0 q0 (�) q (�)

35

where p has degree 2 and q; q0 have degree 1. If q0 = 0; we are �nished. Otherwise,
we switch the last two rows. If q0 divides p we can eliminate p to get an upper
triangular matrix. If q0 does not divide p; then we can still eliminate the degree
2 term in p to reduce it to a polynomial of degree 1. This lands us in a situation
similar to what we ended up with when �21 = 0: So we can �nish using the same
procedure.

Note that we avoided making any illegal moves in the above procedure. It is
possible to formalize this proceedure for n� n matrices, but it still doesn�t lead us
to a complete understanding of the characteristic polynomial. The idea is simply
to treat � as a variable and the entries as polynomials. To eleiminate entries we
then use polynomial devision to reduce the degrees of entries until they can be
eliminated. Since we wish to treat � as a variable we shall rename it t when
doing the Gauss elinimation and only use � for the eigenvalues and roots of the
characteristic polynomial.

The characteristic polynomial of a matrix A 2 Matn�n (F) is the polynomial
�A (t) 2 F [t] we get by applying Gauss elimination to A� t1Fn until it is in upper
triangular form, then multiplying the diagonal entries and if necessary making the
highest degree term tn: Below in �The Frobenius Canonical Form�we shall give an
alternate and completely rigorous de�nition of the characteristic polynomial. This
will show that it really is well de�ned and has degree n; it will also be obvious
that we above procedure really leads us to the rigorously de�ned characteristic
polynomial.

Let us try to carry out this slightly more careful procedure on an example.

Example 52. Let

A =

24 1 2 3
0 2 4
2 1 �1

35



3. EIGENVALUES 109

Then the calculations go as follows

A� t1F3 =

24 1� t 2 3
0 2� t 4
2 1 �1� t

35
24 2 1 �1� t

0 2� t 4
1� t 2 3

35
24 2 1 �1� t
0 2� t 4

0 2� 1�t
2 3 + (1�t)(1+t)

2

35
24 2 1 �1� t
0 2� t 4

0 3
2 +

t
2 3 + (1�t)(1+t)

2

35
24 2 1 �1� t
0 2� t 4

0 3
2 + 1 5 + (1�t)(1+t)

2

35
24 2 1 �1� t
0 5

2 5 + (1�t)(1+t)
2

0 2� t 4

35
264 2 1 �1� �
0 5

2 5 + (1��)(1+�)
2

0 0 4� 2 2��5
�
5 + (1��)(1+�)

2

�
375

Multiplying the diagonal entries gives us

5

�
4� 22� t

5

�
5 +

(1� t) (1 + t)
2

��
= �t3 + 2t2 + 11t� 2

and the characteristic polynomial is

�A (t) = t3 � 2t2 � 11t+ 2

When the matrix A can be written in block triangular form it becomes some-
what easier to calculate the characteristic polynomial.

Lemma 13. Assume that A 2 Matn�n (F) has the form

A =

�
A11 A12
0 A22

�
;

where A11 2 Matk�k (F) ; A22 2 Mat(n�k)�(n�k) (F) ; and A12 2 Matk�(n�k) (F) ;
then

�A (t) = �A11
(t)�A22

(t) :

Proof. To compute �A (t) we do row operations on

t1Fn �A =
�
t1Fk �A11 A12

0 t1Fn�k �A22

�
:
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This can be done by �rst doing row operations on the �rst k rows leading to a
situation that looks like26664

q1 (t) �
. . .

0 qk (t)

�

0 t1Fn�k �A22

37775
Having accomplished this we then do row operations on the last n� k rows. to get2666666664

p1 (t) �
. . .

0 pk (t)

�

0

r1 (t) �
. . .

0 rn�k (t)

3777777775
As these two sets of operations do not depend on each other we see that

�A (t) = q1 (t) � � � qk (t) r1 (t) � � � rn�k (t)
= �A11

(t)�A22
(t) :

�

Finally we need to �gure out how this matrix procedure generates eigenvalues
for general linear maps L : V ! V: In case V is �nite dimensional we can simply
pick a basis and then study the matrix representation [L] : The diagram

V
L�! V

" "
Fn [L]�! Fn

then quickly convinces us that eigenvectors in Fn for [L] are mapped to eigenvectors
in V for L without changing the eigenvalue, i.e.,

[L] � = ��

implies
Lx = �x

and vice versa if � 2 Fn is the coordinate vector for x 2 V: Thus we de�ne the
characteristic polynomial of L as �L (t) = �[L] (t) : While we don�t have a problem
with �nding eigenvalues for L by �nding them for [L] it is less clear that �L (t) is
well-de�ned with this de�nition. To see that it is well-de�ned we would have to
show that �[L] (t) = �B�1[L]B (t) where B the the matrix transforming one basis
into the other. For now we are going to take this on faith. The proof will be given
when we introduce a cleaner de�nition of �L (t) in �The Frobenius canonical form�.
Note, however, that computing �[L] (t) does give us a rigorous method for �nding
the eigenvalues as L: In particular, all of the matrix representations for L must have
the same eigenvalues. Thus there is nothing wrong with searching for eigenvalues
using a �xed matrix representation.

In the case where F = Q or R we can still think of [L] as a complex matrix. As
such we might get complex eigenvalues that do not lie in the �eld F: These roots
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of �L cannot be eigenvalues for L as we are not allowed to multiply elements in V
by complex numbers.

We now need to prove that our method for computing the characteristic poly-
nomial of a matrix gives us the expected answer for the di¤erential equation de�ned
using the operator

L = Dn + an�1D
n�1 + � � �+ a1D + a0:

The corresponding system is

L (x) = _x�Ax

= _x�

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

�a0 �a1 � � � �an�1

377775x
= 0

So we consider the matrix

A =

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

�a0 �a1 � � � �an�1

377775

and with it

A� t1Fn =

266664
�t 1 � � � 0

0 �t . . .
...

...
...

. . . 1
�a0 �a1 � � � �t� an�1

377775
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We immediately run into a problem as we don�t know if some or all of a0; :::; an�1
are zero. Thus we proceed without interchanging rows.266664

�t 1 � � � 0

0 �t . . .
...

...
...

. . . 1
�a0 �a1 � � � �t� an�1

377775
266664
�t 1 � � � 0

0 �t . . .
...

...
...

. . . 1
0 �a1 � a0

t � � � �an�1 � t

377775
266664
�t 1 � � � 0

0 �t 1
. . .

...
...

...
. . . 1

0 0 �a2 � a1
t �

a0
t2 � � � an�1 � t

377775
...266664
�t 1 � � � 0

0 �t 1
. . .

...
...

...
. . . 1

0 0 0 � � � �t� an�1 � an�2
t � � � � � a1

tn�2 �
a0
tn�1

377775
We see that t = 0 is the only value that might give us trouble. In case t = 0 we note
that there cannot be a nontrivial kernel unless a0 = 0: Thus � = 0 is an eigenvalue
if and only if a0 = 0: Fortunately this gets build into our characteristic polynomial.
After multiplying the diagonal entries together we have

p (t) = (�1)n (t)n�1
�
t+ an�1 +

an�2
t

+ � � �+ a1
tn�2

+
a0
tn�1

�
= (�1)n

�
tn + an�1t

n�1 + an�2t
n�2 + � � �+ at+ a0

�
where � = 0 is a root precisely when a0 = 0 as hoped for. Finally we see that
p (t) = 0 is up to sign our old characteristic equation for p (D) = 0:

3.1. Exercises.
(1) Find the characteristic polynomial and if possible the eigenvalues and

eigenvectors for each of the following matrices.

(a)

24 1 0 1
0 1 0
1 0 1

35
(b)

24 0 1 2
1 0 3
2 3 0

35
(c)

24 0 1 2
�1 0 3
�2 �3 0

35
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(2) Find the characteristic polynomial and if possible eigenvalues and eigen-
vectors for each of the following matrices.

(a)
�
0 i
i 0

�
(b)

�
0 i
�i 0

�
(c)

24 1 i 0
i 1 0
0 2 1

35
(3) Find the eigenvalues for the following matrices with a minimum of calcu-

lations (try not to compute the characteristic polynomial).

(a)

24 1 0 1
0 0 0
1 0 1

35
(b)

24 1 0 1
0 1 0
1 0 1

35
(c)

24 0 0 1
0 1 0
1 0 0

35
(4) Find the characteristic polynomial, eigenvalues and eigenvectors for each

of the following linear operators L : P3 ! P3.
(a) L = D:
(b) L = tD = T �D:
(c) L = D2 + 2D + 1:
(d) L = t2D3 +D:

(5) Let p 2 C [t] be a monic polynomial. Show that the characteristic poly-
nomial for D : ker (p (D))! ker (p (D)) is p (t) :

(6) Assume that A 2 Matn�n (F) is upper or lower triangular and let p 2
F [t] : Show that � is an eigenvalue for p (A) if and only if � = p (�) where
� is an eigenvalue for A:

(7) Let L : V ! V be a linear operator on a complex vector space. Assume
that we have a polynomial p 2 C [t] such that p (L) = 0: Show that all
eigenvalues of L are roots of p:

(8) Let L : V ! V be a linear operator and K : W ! V an isomorphism.
Show that L and K�1 � L �K have the same eigenvalues.

(9) Let K : V !W and L :W ! V be two linear maps.
(a) Show that K �L and L�K have the same nonzero eigenvalues. Hint:

If x 2 V is an eigenvector for L�K; then K (v) 2W is an eigenvector
for K � L.

(b) Give an example where 0 is an eigenvalue for L�K but not for K �L:
Hint: Try to have di¤erent dimensions for V and W:

(c) If dimV = dimW; then a. also holds for the zero eigenvalue. Hint:
Use that

dim (ker (K � L)) � max fdim (ker (L)) ;dim (ker (K))g ;
dim (ker (L �K)) � max fdim (ker (L)) ;dim (ker (K))g
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and conclude that if the right hand side is zero then all the linear
maps are isomorphisms.

(10) Let A 2 Matn�n (F) :
(a) Show that A and At have the same eigenvalues and that for each

eigenvalue � we have

dim (ker (A� �1Fn)) = dim
�
ker
�
At � �1Fn

��
:

(b) Show by example that A and At need not have the same eigenvectors.
(11) Let A 2 Matn�n (F) : Consider the following two linear operators on

Matn�n (F) : LA (X) = AX and RA (X) = XA:
(a) Show that � is an eigenvalue for A if and only if � is an eigenvalue

for LA:
(b) Show that �LA (t) = (�A (t))

n.
(c) Show that � is an eigenvalue for At if and only if � is an eigenvalue

for RA:
(d) Relate �At (t) and �RA

(t) :
(12) Let A 2 Matn�n (F) and B 2 Matm�m (F) and consider

L : Matn�m (F)! Matn�m (F) ;
L (X) = AX �XB:

(a) Show that if A and B have a common eigenvalue then, L has non-
trivial kernel. Hint: Use that B and Bt have the same eigenvalues.

(b) Show more generally that if � is an eigenvalue of A and � and eigen-
value for B, then �� � is an eigenvalue for L:

(13) Find the characteristic polynomial, eigenvalues and eigenvectors for

A =

�
� ��
� �

�
; �; � 2 R

as a map A : C2 ! C2:
(14) Show directly, using the methods developed in this section, that the char-

acteristic polynomial for a 3� 3 matrix has degree 3.
(15) Let

A =

�
a b
c d

�
; a; b; c; d 2 R

Show that the roots are either both real or are conjugates of each other.

(16) Show that the eigenvalues of
�
a b
�b d

�
; where a; d 2 R and b 2 C; are

real.

(17) Show that the eigenvalues of
�
ia �b
�b id

�
; where a; d 2 R and b 2 C; are

purely imaginary.

(18) Show that the eigenvalues of
�
a ��b
b �a

�
; where a; b 2 C and jaj2+jbj2 = 1;

are complex numbers of unit length.
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(19) Let

A =

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

�a0 �a1 � � � �an�1

377775 :
(a) Show that all eigenspaces are 1 dimensional.
(b) Show that ker (A) 6= f0g if and only if a0 = 0:

(20) Let

p (t) = (t� �1) � � � (t� �n)
= tn + �n�1t

n�1 + � � �+ �1t+ �0;

where �1; :::; �n 2 F. Show that there is a change of basis such that266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

��0 ��1 � � � ��n�1

377775 = B

266664
�1 1 0

0 �2
. . .
. . . 1

0 �n

377775B�1:
Hint: Try n = 2; 3, assume that B is lower triangular with 1s on the
diagonal, and look at the exercises to �Linear Di¤erential Equations�.

(21) Show that
(a) The multiplication operator T : C1 (R;R) ! C1 (R;R) does not

have any eigenvalues. Recall that T (f) (t) = t � f (t) :
(b) Show that the di¤erential operator D : C [t]! C [t] only has 0 as an

eigenvalue.
(c) Show that D : C1 (R;R)! C1 (R;R) has all real numbers as eigen-

values.
(d) Show that D : C1 (R;C) ! C1 (R;C) has all complex numbers as

eigenvalues.

4. The Minimal Polynomial

The minimal polynomial of a linear operator is, unlike the characteristic polyno-
mial, fairly easy to de�ne rigorously. It is, however, not quite as easy to calculate.
The amazing properties contained in the minimal polynomial on the other hand
seem to make it su¢ ciently desirable that it would be a shame to ignore it.

Recall that projections are characterized by a very simple polynomial relation-
ship L2 � L = 0: The purpose of this section is to �nd a polynomial p (t) for a
linear operator L : V ! V such that p (L) = 0: This polynomial will, like the
characteristic polynomial, also tell us the eigenvalues of L: In subsequent sections
we shall then study the properties of L from what we know about such p: Before
passing on to the abstract constructions let us consider two examples.

Example 53. An involution is a linear operator L : V ! V such that L2 = 1V :
This means that p (L) = 0 if p (t) = t2 � 1: Our �rst observation is that this
relationship implies that L is invertible and that L�1 = L: Next we note that any
eigenvalue must satisfy �2 = 1 and hence be a root of p: We can actually glean
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even more information out of this polynomial relationship. We claim that L is
diagonalizable, in fact

V = ker (L� 1V )� ker (L+ 1V ) :

First we observe that these spaces have trivial intersection as they are eigenspaces
for di¤erent eigenvalues. If x 2 ker (L� 1V ) \ ker (L+ 1V ) ; then

�x = L (x) = x

so x = 0: To show that

V = ker (L� 1V ) + ker (L+ 1V )

we observe that any x 2 V can be written as

x =
1

2
(x� L (x)) + 1

2
(x+ L (x)) :

Next we see that

L (x� L (x)) = L (x)� L2 (x)
= L (x)� x
= � (x� L (x)) :

Thus x+L (x) 2 ker (L� 1V ) and x�L (x) 2 ker (L+ 1V ) : This proves the desired
claim.

Example 54. Consider a linear operator L : V ! V such that (L� 1V )2 = 0:
This relationship implies that 1 is the only possible eigenvalue. Therefore, if L is
diagonalizable, then L = 1V and hence also satis�es the simpler relationship L �
1V = 0: Thus L is not diagonalizable unless it is the identity map. By multiplying
out the polynomial relationship we obtain

L2 � 2L+ 1V = 0:

This implies that
(2 � 1V � L)L = 1V :

Hence L is invertible with L�1 = 2 � 1V � L:

These two examples, together with our knowledge of projections, tell us that
one can get a tremendous amount of information from knowing that an operator
satis�es a polynomial relationship. To commence our more abstract developments
we start with a very simple observation.

Proposition 13. Let L : V ! V be a linear operator and

p (t) = tk + �n�1t
k�1 + � � �+ �1t+ �0 2 F [t]

a polynomial such that

p (L) = Lk + �n�1L
k�1 + � � �+ �1L+ �01V = 0:

(1) All eigenvalues for L are roots of p (t) :
(2) If p (0) = �0 6= 0; then L is invertible and

L�1 =
�1
�0

�
Lk�1 + �n�1L

k�2 + � � �+ �11V
�
:



4. THE MINIMAL POLYNOMIAL 117

To begin with it would be nice to �nd a polynomial p (t) 2 F [t] such that
both of the above properties become bi-implications. In other words � 2 F is an
eigenvalues for L if and only p (�) = 0; and L is invertible if and only if p (0) 6= 0: It
turns out that the characteristic polynomial does have this property, but there is a
polynomial that has even more information as well as being much easier to de�ne.

One defect of the characteristic polynomial can be seen by considering the two
matrices �

1 0
0 1

�
;

�
1 1
0 1

�
They clearly have the same characteristic polynomial p (t) = (t� 1)2, but only the
�rst matrix is diagonalizable.

We de�ne the minimal polynomial �L (t) for L in the following way. Consider
1V ; L; L

2; :::; Lk; :: 2 hom (V; V ) : Since V and hence hom (V; V ) are �nite dimen-
sional we can �nd a smallest k � 1 such that Lk is a linear combination of 1V ; L;
L2; :::; Lk�1:

Lk = �
�
�01V + �1L+ �2L

2 + � � �+ �k�1Lk�1
�
; or

0 = Lk + �k�1L
k�1 + � � �+ �1L+ �01V :

The minimal polynomial of L is de�ned as

�L (t) = tk + �k�1t
k�1 + � � �+ �1t+ �0:

The �rst interesting thing to note is that the minimal polynomial for L = 1V is
given by �1V (t) = t � 1: Hence it is not the characteristic polynomial. The name
�minimal�is justi�ed by the next proposition.

Proposition 14. Let L : V ! V be a linear operator on a �nite dimensional
space.

(1) If p (t) 2 F [t] satis�es p (L) = 0; then deg (p) � deg (�L) :
(2) If p (t) 2 F [t] satis�es p (L) = 0 and deg (p) = deg (�L) ; then p (t) =

� � �L (t) for some � 2 F:

Proof. 1. Assume that p 6= 0 and p (L) = 0; then

p (L) = �mL
m + �m�1L

m�1 + � � �+ �1L+ �01V
= 0

If �m 6= 0; then Lm is a linear combination of lower order terms and hence m �
deg (�L) :

2. In case m = deg (�L) = k we have that 1V ; L; :::; Lk�1 are linearly indepen-
dent. Thus there is only one way in which to make Lk into a linear combination of
1V ; L; :::; L

k�1: This implies the claim. �

Before discussing further properties of the minimal polynomial let us try to
compute it for some simple matrices.



118 2. LINEAR OPERATORS

Example 55. Let

A =

�
� 1
0 �

�

B =

24 � 0 0
0 � 1
0 0 �

35
C =

24 0 �1 0
1 0 0
0 0 i

35
We note that A is not proportional to 1V ; while

A2 =

�
� 1
0 �

�2
=

�
�2 2�

0 �2

�
= 2�

�
� 1
0 �

�
� �2

�
1 0
0 1

�
:

Thus
�A (t) = t2 � 2�t+ �2 = (t� �)2

The calculation for B is similar and evidently yields the same minimal polynomial

�B (t) = t2 � 2�t+ �2 = (t� �)2 :
Finally for C we note that

C2 =

24 �1 0 0
0 �1 0
0 0 �1

35
Thus

�C (t) = t2 + 1:

The next proposition shows that the minimal polynomial contains much of the
information that we usually glean from the characteristic polynomial. In subsequent
sections we shall delve much deeper into the properties of the minimal polynomial
and what it tells us about possible matrix representations of L:

Proposition 15. Let L : V ! V be a linear operator on an n-dimensional
space. Then

(1) If p (L) = 0 for some p 2 F [t] ; then mL divides p; i.e., p (t) = �L (t) q (t)
for some q (t) 2 F [t] :

(2) Let � 2 F; then � is an eigenvalue for L if and only if �L (�) = 0:
(3) L is invertible if and only if �L (0) 6= 0:

Proof. 1. Assume that p (L) = 0: We know that deg (p) � deg (�L) so if we
perform polynomial division (The Euclidean Algorithm), then p (t) = q (t)�L (t) +
r (t) ; where deg (r) < deg (�L) : Sustituting L for t gives p (L) = q (L)�L (L) +
r (L) : Since both p (L) = 0 and �L (L) = 0 we also have r (L) = 0: This will give us
a contradiction with the de�nition of the minimal polynomial unless r = 0: Thus
�L divides p:
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2. We already know that eigenvalues are roots. Conversely, if �L (�) = 0; then
we can write �L (t) = (t� �) p (t) : Thus

0 = �L (L) = (L� �1V ) p (L)
Since deg (p) < deg (�L) we know that p (L) 6= 0; but then the relationship (L� �1V ) p (L) =
0 shows that L� �1V is not invertible.

3. If �L (0) 6= 0; then we already know that L is invertible. Conversely suppose
that �L (0) = 0: Then 0 is an eigenvalue by 2. and hence L cannot be invertible. �

Example 56. The derivative map D : Pn ! Pn has �D = tn+1. Certainly
Dn+1 vanishes on Pn as all the polynomials in Pn have degree � n: This means
that �D (t) = tk for some k � n + 1: On the other hand Dn (tn) = n! 6= 0 forcing
k = n+ 1:

Example 57. Let V = span fexp (�1t) ; :::; exp (�nt)g ; with �1; :::; �n being dis-
tinct, and consider again the derivative map D : V ! V: Then we have D (exp (�it)) =
�i exp (�it) : In �Linear Independence� and �Row Reduction�in Chapter 1 it was
shown that exp (�1t) ; :::; exp (�nt) form a basis for V: Now observe that

(D � �11V ) � � � (D � �n1V ) (exp (�n) t) = 0:
By rearranging terms it follows that

(D � �11V ) � � � (D � �n1V ) = 0 on V:
On the other hand

(D � �11V ) � � � (D � �n�11V ) (exp (�n) t) 6= 0:
This measn that �D divides (t� �1) � � � (t� �n) but can�t be (t� �1) � � � (t� �n�1) :
Since the order of the �s is irrelevant this shows that �D (t) = (t� �1) � � � (t� �n) :

Finally let us compute the minimal polynomials in two interesting and some-
what tricky situations.

Proposition 16. The minimal polynimial for

A =

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

��0 ��1 � � � ��n�1

377775
is given by

�A (t) = tn + �n�1t
n�1 + � � �+ �1t+ �0:

Proof. It turns out to be easier to calculate the minimal polynomial for the
transpose

B = At =

2666664
0 0 � � � 0 ��0
1 0 � � � 0 ��1
0 1 � � � 0 ��2
...
...

. . .
...

...
0 0 � � � 1 ��n�1

3777775
and it is not hard to see that a matrix and its transpose have the same minimal
polynomials.
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We claim that �B (t) = p (t) = �A (t) : To see this, �rst note that ek = B (ek�1) ;
for k = 2; :::; n showing that ek = Bk�1 (e1) ; for k = 2; :::; n: Thus the vectors e1;
B (e1) ; :::; B

n�1 (e1) are linearly independent. This shows that 1Fn ; B; :::; Bn�1

must also be linearly independent. Next we can also show that p (B) = 0: This is
because

p (B) (ek) = p (B) �Bk�1 (e1)
= Bk�1 � p (B) (e1)

and p (B) (e1) = 0 since

p (B) (e1) =
�
(B)

n
+ �n�1 (B)

n�1
+ � � �+ �1B + �01Fn

�
e1

= (B)
n
(e1) + �n�1 (B)

n�1
(e1) + � � �+ �1B (e1) + �01Fn (e1)

= Ben + �n�1en + � � �+ �1e2 + �0e1
= ��0e1 � �1e2 � � � � � �n�1en

+�n�1en + � � �+ �1e2 + �0e1
= 0:

�

Next we show

Proposition 17. The minimal polynomial for

C =

266664
�1 1 0

0 �2
. . .
. . . 1

0 �n

377775
is given by

�C (t) = (t� �1) � � � (t� �n) :

Proof. In fact in the exercises to �Eigenvalues�it was shown that C is similar
to A if we de�ne the �s by

p (t) = tn + �n�1t
n�1 + � � �+ �1t+ �0 = (t� �1) � � � (t� �n) :

The claim can also be established directly by �rst showing that p (C) = 0: This
means that �C divides p: We then just need to show that qi (C) 6= 0; where

qi (t) =
p (t)

t� �i
:

The key observation for these facts follow from knowing how to multiply certain
upper triangular matrices:266664

0 1 0
0 
2 1

0 0 
3
. . .
. . .

377775
266664
�1 1 0
0 0 1

0 0 �3
. . .
. . .

377775 =
26664
0 0 1 0
0 0 �
0 0 
3�3
...
...

. . .

37775 ;
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0 0 1 0
0 0 �
0 0 
3�3

3775
26664
"1 1 0
0 "2 1
0 0 0 1

. . .

37775 =
26664
0 0 0 1
0 0 0 �
0 0 0 �
...
...
... 
4�4"4

37775
Therefore, when we do the multiplication

(C � �11Fn) (C � �21Fn) � � � (C � �n1Fn)

by starting at the right, we get that the �rst k columns are zero in

(C � �11Fn) (C � �21Fn) � � � (C � �k1Fn)

but that the (k + 1)th column has 1 as the �rst entry. Clearly this shows that
p (C) = 0 as well as qn (C) 6= 0: Since we didn�t specify the last �n this will also
show that qi (C) 6= 0 for all i = 1; :::; n: �

4.1. Exercises.

(1) Find the minimal and characteristic polynomials for

A =

24 1 0 1
0 1 0
1 0 1

35 :
(2) Assume that L : V ! V has an invariant subspace M � V: Show that

�LjM divides �L:
(3) Show that �L (t) = �L0 (t) ; where L

0 is the dual of L: Alternatively show
that a matrix and its transpose have the same minimal polynomials.

(4) Let L : V ! V be a linear operator such that L2 + 1 = 0:
(a) If V is real vector space show that 1V and L are linearly independent

and that �L (t) = t2 + 1:
(b) If V and L are complex show that 1V and L need not be linearly

independent.
(c) Find the possibilities for the minimal polynomial of L3+2L2+L+3:

(5) Let L : V ! V be a linear operator and p 2 F [t] a polynomial. Show

deg�p(L) (t) � deg�L (t) :

(6) Assume that L : V ! V has minimal polynomial �L (t) = t2 + 1: Find a
polynomial p (t) such that L�1 = p (L) :

(7) Assume that L : V ! V has minimal polynomial �L (t) = t3 + 2t + 1:
Find a polynomial q (t) of degree � 2 such that L4 = q (L) :

(8) Assume that L : V ! V has minimal polynomial �L (t) = t: Find a matrix
representation for L:

(9) If l � deg (�L) = k; then show that Ll is a linear combination of 1V ; L; :::; Lk�1:
If L is invertible show the same for all l < 0:

(10) Show that the minimal polynomial for D : ker (p (D)) ! ker (p (D)) is
�D = p:

(11) Let A 2 Matn�n (F) and consider the two linear operators LA; RA :
Matn�n (F)! Matn�n (F) de�ned by LA (X) = AX and RA (X) = XA:
Find the minimal polynomial of LA; RA given �A (t) :
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(12) Consider two matrices A and B; show that the minimal polynomial for
the block diagonal matrix �

A 0
0 B

�
is lcm f�A; �Bg : Generalize this to block diagonal matrices264 A1

. . .
Ak

375
5. Diagonalizability

In this section we shall investigate how and when one can �nd a basis that puts
a linear operator L : V ! V into the simplest possible form. This problem will
reappear in Chapter 4 for symmetric and self-adjoint operators, but what we do
here is more general. From the section on di¤erential equations we have seen that
decoupling the system by �nding a basis of eigenvectors for a matrix considerably
simpli�es the problem of solving the equation. It is from that set-up that we shall
take our cue to the simplest form of a linear operator.

A linear operator L : V ! V on a �nite dimensional vector space is said to be
diagonalizable if we can �nd a basis for V that consists of eigenvectors for L; i.e., a
basis e1; :::; en for V such that L (ei) = �iei for all i = 1; :::; n: This is the same as
saying that

�
L (e1) � � � L (en)

�
=
�
e1 � � � en

� 264 �1 � � � 0
...

. . .
...

0 � � � �n

375 :
In other words, the matrix representation for L is a diagonal matrix.

One advantage of having a basis that diagonalizes a linear operator L is that it
becomes much simpler to calculate the powers Lk since Lk (ei) = �ki ei: More gen-
erally if p (t) 2 F [t] ; then we have p (L) (ei) = p (�i) ei: Thus p (L) is diagonalized
with respect to the same basis and with eigenvalues p (�i) :

We are now ready for a few examples and then the promised application of
diagonalizability.

Example 58. The derivative map D : Pn ! Pn is not diagonalizable. We
already know that is has a matrix representation that is upper triangular and with
zeros on the diagonal. Thus the characteristic polynomial is tn+1: So the only
eigenvalue is 0: Therefore, had D been diagonalizable it would have had to be the
zero transformation 0Pn : Since this is not true we conclude that D : Pn ! Pn is
not diagonalizable.

Example 59. Let V = span fexp (�1t) ; :::; exp (�nt)g and consider again the
derivative map D : V ! V: Then we have D (exp (�it)) = �i exp (�it) : So if we
extract a basis for V among the functions exp (�1t) ; :::; exp (�nt) ; then we have
found a basis of eigenvectors for D:

These two examples show that diagonalizability is not just a property of the
operator. It really matters what space the operator is restricted to live on. We can
exemplify this with matrices as well.
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Example 60. Consider

A =

�
0 �1
1 0

�
:

As a map A : R2 ! R2; this operator cannot be diagonalizable as it rotates vectors.
However, as a map A : C2 ! C2 it has two eigenvalues �i with eigenvectors�

1
�i

�
:

As these eigenvectors form a basis for C2 we conclude that A : C2 ! C2 is diago-
nalizable.

We have already seen how decoupling systems of di¤erential equations is related
to being able to diagonalize a matrix. Below we give a di¤erent type of example of
how diagonalizability can be used to investigate a mathematical problem.

Consider the Fibonacci sequence 1; 1; 2; 3; 5; 8; ::: where each element is the sum
of the previous two elements. Therefore, if �n is the n

th term in the sequence, then
�n+2 = �n+1 + �n; with initial values �0 = 1; �1 = 1: If we record the elements in
pairs

�n =

�
�n
�n+1

�
2 R2;

then the relationship takes the form�
�n+1
�n+2

�
=

�
0 1
1 1

� �
�n
�n+1

�
;

�n+1 = A�n:

The goal is to �nd a general formula for �n and to discover what happens as n!1:
The matrix relationship tells us that

�n = An�0;�
�n
�n+1

�
=

�
0 1
1 1

�n �
1
1

�
:

Thus we must �nd a formula for �
0 1
1 1

�n
:

This is where diagonalization comes in handy. The matrix A has characteristic
polynomial

t2 � t� 1 =
 
t� 1 +

p
5

2

! 
t� 1�

p
5

2

!
:

The corresponding eigenvectors for 1�
p
5

2 are
�

1
1�
p
5

2

�
: So

�
0 1
1 1

� �
1 1

1+
p
5

2
1�
p
5

2

�
=

�
1 1

1+
p
5

2
1�
p
5

2

�"
1+
p
5

2 0

0 1�
p
5

2

#
;
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or

�
0 1
1 1

�
=

�
1 1

1+
p
5

2
1�
p
5

2

�"
1+
p
5

2 0

0 1�
p
5

2

# �
1 1

1+
p
5

2
1�
p
5

2

��1

=

�
1 1

1+
p
5

2
1�
p
5

2

�"
1+
p
5

2 0

0 1�
p
5

2

#"
1
2 �

1
2
p
5

1p
5

1
2 +

1
2
p
5
� 1p

5

#
:

This means that

�
0 1
1 1

�n
=

�
1 1

1+
p
5

2
1�
p
5

2

�"
1+
p
5

2 0

0 1�
p
5

2

#n " 1
2 �

1
2
p
5

1p
5

1
2 +

1
2
p
5
� 1p

5

#

=

�
1 1

1+
p
5

2
1�
p
5

2

�24 � 1+p52

�n
0

0
�
1�
p
5

2

�n
35" 1

2 �
1

2
p
5

1p
5

1
2 +

1
2
p
5
� 1p

5

#

=

24
�
1+
p
5

2

�n �
1
2 �

1
2
p
5

�
+
�
1�
p
5

2

�n �
1
2 +

1
2
p
5

�
�
1+
p
5

2

�n+1 �
1
2 �

1
2
p
5

�
+
�
1�
p
5

2

�n+1 �
1
2 +

1
2
p
5

�
1p
5

�
1+
p
5

2

�n
� 1p

5

�
1�
p
5

2

�n
1p
5

�
1+
p
5

2

�n+1
� 1p

5

�
1�
p
5

2

�n+1
35

Hence

�n =

 
1 +
p
5

2

!n�
1

2
� 1

2
p
5

�
+

 
1�
p
5

2

!n�
1

2
+

1

2
p
5

�

+
1p
5

 
1 +
p
5

2

!n
� 1p

5

 
1�
p
5

2

!n

=

�
1

2
+

1

2
p
5

� 
1 +
p
5

2

!n
+

 
1�
p
5

2

!n�
1

2
� 1

2
p
5

�

=

 
1 +
p
5

2
p
5

! 
1 +
p
5

2

!n
�
 
1�
p
5

2

!n 
1�
p
5

2
p
5

!

=

�
1p
5

� 
1 +
p
5

2

!n+1
�
�
1p
5

� 
1�
p
5

2

!n+1
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The ratio of successive Fibonacci numbers satis�es

�n+1
�n

=

�
1p
5

��
1+
p
5

2

�n+2
�
�
1p
5

��
1�
p
5

2

�n+2
�
1p
5

��
1+
p
5

2

�n+1
�
�
1p
5

��
1�
p
5

2

�n+1
=

�
1+
p
5

2

�n+2
�
�
1�
p
5

2

�n+2
�
1+
p
5

2

�n+1
�
�
1�
p
5

2

�n+1
=

�
1+
p
5

2

�
�
�
1�
p
5

2

��
1�
p
5

1+
p
5

�n+1
1�

�
1�
p
5

1+
p
5

�n+1
where

�
1�
p
5

1+
p
5

�n+1
! 0 as n!1: Thus

lim
n!1

�n+1
�n

=
1 +
p
5

2
;

which is the Golden Ratio. This ratio is often denoted by �. The Fibonacci se-
quence is often observed in growth phenomena in nature and is also of fundamental
importance in combinatorics.

It is not easy to come up with a criterion that guarantees that a matrix is
diagonalizable and which is also easy to use. We shall see that symmetric matrices
with real entries are diagonalizable in Chapter 4. It turns out that the minimal
polynomial holds the key to diagonalizability of an operator.

In general what one has to do for an operator L : V ! V is compute the
eigenvalues, then list them without multiplicities �1; :::; �k; then calculate all the
eigenspaces ker (L� �i1V ) ; and �nally, check if one can �nd a basis of eigenvec-
tors. To help us with this process there are some useful abstract results about the
relationship between the eigenspaces.

Lemma 14. (Eigenspaces form Direct Sums) If �1; :::; �k are distinct eigenval-
ues for a linear operator L : V ! V; then

ker (L� �11V ) + � � �+ ker (L� �k1V ) = ker (L� �11V )� � � � � ker (L� �k1V ) :

In particular we have
k � dim (V ) :

Proof. The proof uses induction on k. When k = 1 there is nothing to prove.
Assume that the result is true for any collection of k distinct eigenvalues for L and
suppose that we have k+1 distinct eigenvalues �1; :::; �k+1 for L: Since we already
know that

ker (L� �11V ) + � � �+ ker (L� �k1V ) = ker (L� �11V )� � � � � ker (L� �k1V )

it will be enough to prove that

(ker (L� �11V ) + � � �+ ker (L� �k1V )) \ ker (L� �k+11V ) = f0g :

In other words we claim that that if L (x) = �k+1x and x = x1 + � � � + xk where
xi 2 ker (L� �i1V ) ; then x = 0: We can prove this in two ways.
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First note that if k = 1; then x = x1 implies that x is the eigenvector for two
di¤erent eigenvalues. This is clearly not possible unless x = 0: Thus we can assume
that k > 1: In that case

�k+1x = L (x)

= L (x1 + � � �+ xk)
= �1x1 + � � �+ �kxk:

Subtracting yields

0 = (�1 � �k+1)x1 + � � �+ (�k � �k+1)xk
Since we assumed that

ker (L� �11V ) + � � �+ ker (L� �k1V ) = ker (L� �11V )� � � � � ker (L� �k1V )

it follows that (�1 � �k+1)x1 = 0; :::; (�k � �k+1)xk = 0: As (�1 � �k+1) 6= 0;
:::; (�k � �k+1) 6= 0 we conclude that x1 = 0; :::; xk = 0; implying that x =
x1 + � � �+ xk = 0:

The second way of doing the induction is slightly trickier, but also more elegant.
This proof will in addition give us an interesting criterion for when an operator
is diagonalizable. Since �1; :::; �k+1 are di¤erent the polynomials t � �1; :::; t �
�k+1 have 1 as their greatest common divisor. Thus also (t� �1) � � � (t� �k) and
(t� �k+1) have 1 as their greatest common divisor. This means that we can �nd
polynomials p (t) ; q (t) 2 F [t] such that

1 = p (t) (t� �1) � � � (t� �k) + q (t) (t� �k+1) :

If we put the operator L into this formula in place of t we get:

1V = p (L) (L� �11V ) � � � (L� �k1V ) + q (L) (L� �k+11V ) :

Applying this to x gives us

x = p (L) (L� �11V ) � � � (L� �k1V ) (x) + q (L) (L� �k+11V ) (x) :

If

x 2 (ker (L� �11V ) + � � �+ ker (L� �k1V )) \ ker (L� �k+11V )
then

(L� �11V ) � � � (L� �k1V ) (x) = 0;

(L� �k+11V ) (x) = 0

so also x = 0: �

This gives us three criteria for diagonalizability.

Theorem 20. (First Characterization of Diagonalizability) Let L : V ! V
be a linear operator on an n-dimensional vector space over F: If �1; :::; �k 2 F are
distinct eigenvalues for L such that

n = dim (ker (L� �11V )) + � � �+ dim (ker (L� �k1V )) ;

Then L is diagonalizable. In particular, if L has n distinct eigenvalues in F; then
L is diagonalizable.
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Proof. Our assumption together with the above lemma shows that

n = dim (ker (L� �11V )) + � � �+ dim (ker (L� �k1V ))
= dim (ker (L� �11V ) + � � �+ ker (L� �k1V )) :

Thus
ker (L� �11V )� � � � � ker (L� �k1V ) = V

and we can �nd a basis of eigenvectors, by selecting a basis for each of the eigenspaces.
For the last statement we only need to observe that dim (ker (L� �1V )) � 1

for any eigenvalue � 2 F: �

The next characterization o¤ers a particularly nice condition for diagonalizabil-
ity which will give us the minimal polynomial characterization of diagonalizability.

Theorem 21. (Second Characterization of Diagonalizability) Let L : V ! V
be a linear operator on an n-dimensional vector space over F: L is diagonalizable if
and only if we can �nd p 2 F [t] such that p (L) = 0 and

p (t) = (t� �1) � � � (t� �k) ;

where �1; :::; �k 2 F are distinct.

Proof. Assuming that L is diagonalizable we have

V = ker (L� �11V )� � � � � ker (L� �k1V ) :

So if we use
p (t) = (t� �1) � � � (t� �k)

we see that p (L) = 0 as p (L) vanishes on each of the eigenspaces.
Conversely assume that p (L) = 0 and

p (t) = (t� �1) � � � (t� �k) ;

where �1; :::; �k 2 F are distinct. If some of these �s are not eigenvalues for L we
can eliminate them. We then still have that L is a root of the new polynomial
as L � �1V is an isomorphism unless � is an eigenvalue. The proof now goes by
induction on the number of roots in p: If there is one root the result is obvious. If
k � 2 we can write

1 = r (t) (t� �1) � � � (t� �k�1) + s (t) (t� �k)
= r (t) q (t) + s (t) (t� �k) :

We then claim that
V = ker (q (L))� ker (L� �k1V )

and that
L (ker (q (L))) � ker (q (L)) :

This will �nish the induction step as Ljker(q(L)) then becomes a linear operator
which is a root of q:

To establish the decomposition observe that

x = q (L) (r (L) (x)) + (L� �k1V ) (s (L) (x))
= y + z:
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Here y 2 ker (L� �k1V ) since

(L� �k1V ) (y) = (L� �k1V ) (q (L) (r (L) (x)))
= p (L) (r (L) (x))

= 0;

and z 2 ker (q (L)) since

q (L) ((L� �k1V ) (s (L) (x))) = p (L) (s (L) (x)) = 0:

Thus

V = ker (q (L)) + ker (L� �k1V ) :
If

x 2 ker (q (L)) \ ker (L� �k1V ) ;
then we have

x = r (L) (q (L) (x)) + s (L) ((L� �k1V ) (x)) = 0:

This gives the direct sum decomposition.
Finally if x 2 ker (q (L)) ; then we see that

q (L) (L (x)) = (q (L) � L) (x)
= (L � q (L)) (x)
= L (q (L) (x))

= 0:

Thus showing that L (x) 2 ker (q (L)) : �

Corollary 16. (The Minimal Polynomial Characterization of Diagonalizabil-
ity) Let L : V ! V be a linear operator on an n-dimensional vector space over F:
L is diagonalizable if and only if the minimal polynomial factors

�L (t) = (t� �1) � � � (t� �k) ;

and has no multiple roots, i.e., �1; :::; �k 2 F are distinct.

Finally we can estimate how large dim (ker (L� �1V )) can be if we have fac-
tored the characteristic polynomial.

Lemma 15. Let L : V ! V be a linear operator on an n-dimensional vector
space over F: If � 2 F is an eigenvalue and �L (t) = (t� �)

m
q (t) ; where q (�) 6= 0;

then

dim (ker (L� �1V )) � m:

We call dim (ker (L� �1V )) the geometric multiplicity of � and m the algebraic
multiplicity of �:

Proof. Select a complement N to ker (L� �1V ) in V: Then choose a basis
where x1; :::; xk 2 ker (L� �1V ) and xk+1; :::; xn 2 N: Since L (xi) = �xi for i =
1; :::; k we see that the matrix representation has a block form that looks like

[L] =

�
�1Fk B
0 C

�
:
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This implies that

�L (t) = �[L] (t)

= ��1Fk (t)�C (t)

= (t� �)k �C (t)

and hence that � has algebraic multiplicity m � k: �

Clearly the appearance of multiple roots in the characteristic polynomial is
something that might prevent linear operators from becoming diagonalizable. The
following criterion is often useful for deciding whether or not a polynomial has
multiple roots.

Proposition 18. A polynomial p (t) 2 F [t] has � 2 F as a multiple root if and
only if � is a root of both p and Dp:

Proof. If � is a multiple root, then p (t) = (t� �)m q (t) ; where m � 2: Thus

Dp (t) = m (t� �)m�1 q (t) + (t� �)mDq (t)

also has � as a root.
Conversely if � is a root of Dp and p; then we can write p (t) = (t� �) q (t) and

0 = Dp (�)

= q (�) + (�� �)Dq (�)
= q (�) :

Thus also q (t) has � as a root and hence � is a multiple root of p (t) : �

Example 61. If p (t) = t2 + �t + �; then Dp (t) = 2t + �: Thus we have a
double root only if the root t = ��2 of Dp is a root of p: If we evaluate

p
�
��
2

�
=

�2

4
� �2

2
+ �

= ��
2

4
+ �

= ��
2 � 4�
4

we see that this occurs precisely when the discriminant vanishes. This conforms
nicely with the quadratic formula for the roots.

Example 62. If p (t) = t3+12t2�14; then the roots are pretty nasty. We can,
however, check for multiple roots by �nding the roots of

Dp (t) = 3t2 + 24t = 3t (t+ 8)

and cheking whether they are roots of p

p (0) = �14 6= 0;
p (8) = 83 + 12 � 82 � 14

= 82 (8 + 12)� 14 > 0:
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As an application of the above characterizations of diagonalizability we can
now complete some of our discussions about solving nth order di¤erential equations
where there are no multiple roots in the characteristic polynomial.

First we wish to give a new proof that exp (�1t) ; :::; exp (�nt) are linearly inde-
pendent if �1; :::; �n are distinct. For that we consider V = span fexp (�1t) ; :::; exp (�nt)g
and D : V ! V: The result is now obvious as each of the functions exp (�it) is an
eigenvector with eigenvalue �i for D : V ! V: As �1; :::; �n are distinct we can
conclude that the corresponding eigenfunctions are linearly independent. Thus
exp (�1t) ; :::; exp (�nt) form a basis for V which diagonalizes D:

In order to solve the initial value problem for higher order di¤erential equations
it was necessary to show that the Vandermonde matrix

26664
1 � � � 1
�1 � � � �n
...

. . .
...

�n�11 � � � �n�1n

37775

is invertible, when �1; :::; �n 2 F are distinct. This was done is �Linear Indepen-
dence� and will now be established using eigenvectors. Given the origins of this
problem (in this book) it is not unnatural to consider a matrix

A =

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

��0 ��1 � � � ��n�1

377775 ;

where

p (t) = tn + �n�1t
n�1 + � � �+ �1t+ �0

= (t� �1) � � � (t� �n) :

The characteristic polynomial for A is then p (t) and hence �1; :::; �n 2 F are the
eigenvalues. When these eigenvalues are distinct we therefore know that the cor-
responding eigenvectors are linearly independent. To �nd these eigenvectors note
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that

A

26664
1
�k
...

�n�1k

37775 =

266664
0 1 � � � 0

0 0
. . .

...
...

...
. . . 1

��0 ��1 � � � ��n�1

377775
26664

1
�k
...

�n�1k

37775

=

26664
�k
�2k
...

��0 � �1�k � � � � � �n�1�n�1k

37775

=

26664
�k
�2k
...
�nk

37775 , since p (�k) = 0

= �k

26664
1
�k
...

�n�1k

37775 :

This implies that the columns in the Vandermonde matrix are the eigenvectors for a
diagonalizable operator. Hence it must be invertible. Note that A is diagonalizable
if and only if �1; :::; �n are distinct as all eigenspaces for A are 1 dimensional (we
shall also prove and use this in the next section �Cyclic Subspaces�).

An interesting special case occurs when p (t) = tn � 1 and we assume that
F = C: Then the roots are the nth roots of unity and the operator that has these
numbers as eigenvalues looks like

C =

266664
0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
1 0 � � � 0

377775 :
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The powers of this matrix have the following interesting patterns:

C2 =

266666664

0 0 1 0 0

0 0
. . .

1 0
0 0 1
1 0 0 0
0 1 0 0

377777775
;

...

Cn�1 =

266664
0 � � � � � � 1

1 0
. . .

...
...

. . .
. . . 0

0 � � � 1 0

377775 ;

Cn =

266664
1 0 � � � 0

0 1
. . .

...
...

. . .
. . . 0

0 � � � 0 1

377775 = 1Fn :
A linear combination of these powers looks like:

C�0;:::;�n�1 = �01Fn + �1C + � � �+ �n�1Cn�1

=

26666666664

�0 �1 �2 �3 � � � �n�1
�n�1 �0 �1 �2 � � � �n�2
... �n�1 �0

. . .
...

�3
... �n�1

. . .

�2 �3
...

. . . �0 �1
�1 �2 �3 � � � �n�1 �0

37777777775
Since we have a basis that diagonalizes C and hence also all of its powers, we

have also found a basis that diagonalizes C�0;:::;�n�1 : This would probably not have
been so easy to see if we had just been handed the matrix C�0;:::;�n�1 :

5.1. Exercises.

(1) Decide whether or not the following matrices are diagonalizable.

(a)

24 1 0 1
0 1 0
1 0 1

35
(b)

24 0 1 2
1 0 3
2 3 0

35
(c)

24 0 1 2
�1 0 3
�2 �3 0

35
(2) Decide whether or not the following matrices are diagonalizable.
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(a)
�
0 i
i 0

�
(b)

�
0 i
�i 0

�
(c)

24 1 i 0
i 1 0
0 2 1

35
(3) Decide whether or not the following matrices are diagonalizable.

(a)

24 1 0 1
0 0 0
1 0 1

35
(b)

24 1 0 1
0 1 0
1 0 1

35
(c)

24 0 0 1
0 1 0
1 0 0

35
(4) Find the characteristic polynomial, eigenvalues and eigenvectors for each

of the following linear operators L : P3 ! P3. Then decide whether they
are diagonalizable by checking whether there is a basis for eigenvectors.
(a) L = D:
(b) L = tD = T �D:
(c) L = D2 + 2D + 1:
(d) L = t2D3 +D:

(5) Consider the linear operator on Matn�n (F) de�ned by L (X) = Xt: Show
that L is diagonalizable. Compute the eigenvalues and eigenspaces.

(6) For which s; t is the matrix diagonalizable�
1 1
s t

�
?

(7) For which �; �; 
 is the matrix diagonalizable24 0 1 0
0 0 1
� � 


35?
(8) Assume L : V ! V is diagonalizable. Show that V = ker (L)� im (L) :
(9) Assume that L : V ! V is a diagonalizable real linear map. Show that

tr
�
L2
�
� 0:

(10) Assume that A 2 Matn�n (F) is diagonalizable.
(a) Show that At is diagonalizable.
(b) Show that LA (X) = AX de�nes a diagonalizable operator onMatn�n (F) :
(c) Show thatRA (X) = XA de�nes a diagonalizable operator onMatn�n (F) :

(11) If E : V ! V is a projection on a �nite dimensional space, then tr (E) =
dim (im (E)) :

(12) Let A 2 Matn�n (F) and B 2 Matm�m (F) and consider

L : Matn�m (F)! Matn�m (F) ;
L (X) = AX �XB:
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Show that if B is diagonalizable, then all eigenvalues of L are of the form
�� �, where � is an eigenvalue of A and � an eigenvalue of B:

(13) (Restrictions of Diagonalizable Operators) Let L : V ! V be a diagonal-
izable operator and M � V a subspace such that L (M) �M:
(a) If x + y 2 M , where L (x) = �x, L (y) = �y; and � 6= �; then

x; y 2M:
(b) If x1 + � � �+ xk 2M and L (xi) = �ixi; where �1; :::; �k are distinct,

then x1; :::; xk 2M: Hint: Use induction on k:
(c) Show that L :M !M is diagonalizable.
(d) Now use the Second Characterization of Diagonalizability to show

directly that L :M !M is diagonalizable.
(14) Let L : V ! V be a linear operator on a �nite dimensional vector space.

Show that � is a multiple root for �L (t) if and only if

f0g $ ker (L� �1V ) $ ker
�
(L� �1V )2

�
:

(15) Assume that L;K : V ! V are both diagonalizable and that KL = LK:
Show that we can �nd a basis for V that diagonalizes both L and K: Hint:
you can use the previous exercise with M as an eigenspace for one of the
operators.

(16) Let L : V ! V be an operator on a vector space and �1; :::; �k distinct
eigenvalues. If x = x1 + � � �+ xk; where xi 2 ker (L� �i1V ) ; then

(L� �11V ) � � � (L� �k1V ) (x) = 0:

(17) Let L : V ! V be an operator on a vector space and � 6= �: Use the
equation

1

�� � (L� �1V )�
1

�� � (L� �1V ) = 1V

to show that two eigenspaces for L have trivial intersection.
(18) Consider an involution L : V ! V; i.e., L2 = 1V :

(a) Show that x� L (x) is an eigenvector for L with eigenvalue �1:
(b) Show that V = ker (L+ 1V )� ker (L� 1V ) :
(c) Conclude that L is diagonalizable.

(19) Assume L : V ! V satis�es L2 + �L+ �1V = 0 and that the roots �1; �2
of �2 + ��+ � are distinct and lie in F:
(a) Determine 
; � so that

x = 
 (L (x)� �1x) + � (L (x)� �2x) :

(b) Show that L (x)��1x is an eigenvector for L with eigenvalue �2 and
L (x)� �2x is an eigenvector for L with eigenvalue �1:

(c) Conclude that V = ker (L� �11V )� ker (L� �21V ) :
(d) Conclude that L is diagonalizable.

(20) Let L : V ! V be a linear operator with minimal polynomial mL (t) =
p (t) q (t) ; where gcd fp; qg = 1: Show that V = ker (p (L)) � ker (q (L))
and that mLjker(p(L)) = p and mLjker(q(L)) = q: Hint: Look at the second
proof of why eigenspaces form direct sums.
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6. Cyclic Subspaces

Let L : V ! V be a linear operator on a �nite dimensional vector space. A
subspace M � V is said to be L invariant or simply invariant if L (M) �M: Thus
the restriction of L to M de�nes a new linear operator LjM :M !M:We see that
eigenvectors generate one dimensional invariant subspaces and more generally that
eigenspaces ker (L� �1V ) are L-invariant.

The goal of this section is to �nd a relatively simple matrix representation for
operators L that aren�t necessarily diagonalizable. The way in which this is going
to be achieved is by �nding a decomposition V = M1 � � � � �Mk into L-invariant
subspaces Mi with the property that LjMi has matrix representation that can be
found by only knowing the characteristic or minimal polynomial for LjMi :

The invariant subspaces we are going to use are in fact a very natural gen-
eralization of eigenvectors. First we observe that x 2 V is an eigenvector if
L (x) 2 span fxg or in other words L (x) is a linear combination of x: In case
L (x) is not a multiple of x we consider the cyclic subspace generated by all of the
vectors x; L (x) ; ::::; Lk (x) ; ....

Cx = span
�
x; L (x) ; L2 (x) ; :::; Lk (x) ; :::

	
:

Assuming x 6= 0; we can �nd a smallest k � 1 such that

Lk (x) 2 span
�
x; L (x) ; L2 (x) ; :::; Lk�1 (x)

	
:

With this de�nition and construction behind us we can now prove.

Lemma 16. Let L : V ! V be a linear operator on an n-dimensional vector
space. Then Cx is L-invariant and we can �nd k � dim (V ) so that x; L (x) ;
L2 (x) ; :::; Lk�1 (x) form a basis for Cx: The matrix representation for LjCx with
respect to this basis is 2666664

0 0 � � � 0 �0
1 0 � � � 0 �1
0 1 � � � 0 �2
...
...
. . .

...
...

0 0 � � � 1 �k�1

3777775
where

Lk (x) = �0x+ �1L (x) + � � �+ �k�1Lk�1 (x) :

Proof. The vectors x; L (x) ; L2 (x) ; :::; Lk�1 (x)must be linearly independent
if we pick k as the smallest k such that

Lk (x) = �0x+ �1L (x) + � � �+ �k�1Lk�1 (x) :

To see that they span Cx we need to show that

Lm (x) 2 span
�
x; L (x) ; L2 (x) ; :::; Lk�1 (x)

	
for all m � k: We are going to use induction on m to prove this. If m = 0; :::k � 1;
there is nothing to prove. Assuming that

Lm�1 (x) = �0x+ �1L (x) + � � �+ �k�1Lk�1 (x)

we get
Lm (x) = �0L (x) + �1L

2 (x) + � � �+ �k�1Lk (x) :
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Since we already have that

Lk (x) 2 span
�
x; L (x) ; L2 (x) ; :::; Lk�1 (x)

	
it follows that

Lm (x) 2 span
�
x; L (x) ; L2 (x) ; :::; Lk�1 (x)

	
:

This completes the induction step. This also explains why Cx is L invariant.
Namely, if z 2 Cx; then we have

z = 
0x+ 
1L (x) + � � �+ 
k�1Lk�1 (x) ;

and

L (z) = 
0L (x) + 
1L
2 (x) + � � �+ 
k�1Lk (x) :

As Lk (x) 2 Cx we see that L (z) 2 Cx as well.
To �nd the matrix representation we note that�

L (x) L (L (x)) � � � L
�
Lk�2 (x)

�
L
�
Lk�1 (x)

� �
=

�
L (x) L2 (x) � � � Lk�1 (x) Lk (x)

�

=
�
x L (x) � � � Lk�2 (x) Lk�1 (x)

�
2666664
0 0 � � � 0 �0
1 0 � � � 0 �1
0 1 � � � 0 �2
...
...

. . .
...

...
0 0 � � � 1 �k�1

3777775 :
This proves the lemma. �

The matrix representation for LjCx is apparently the transpose of the type
of matrix coming from higher order di¤erential equations that we studied in the
previous sections. Therefore, we can expect our knowledge of those matrices to
carry over without much e¤ort. To be a little more precise we de�ne the companion
matrix of a monic polynomial p (t) 2 F [t] as the matrix

Cp =

2666664
0 0 � � � 0 ��0
1 0 � � � 0 ��1
0 1 � � � 0 ��2
...
...

. . .
...

...
0 0 � � � 1 ��n�1

3777775 ;
p (t) = tn + �n�1t

n�1 + � � �+ �1t+ �0:

It is worth mentioning that the companion matrix for p = t+� is simply the 1� 1
matrix [��] :

Proposition 19. The characteristic and minimal polynomials of Cp are both
p (t) and all eigenspaces are one dimensional. In particular, Cp is diagonalizable if
and only all the roots of p (t) are distinct and lie in F:

Proof. Even though we can prove these properties from our knowledge of the
transpose of Cp it is still worthwhile to give a complete proof. Also recall that we
computed the minimal polynomial in �The Minimal Polynomial�section above.
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To compute the characteristic polynomial we consider:

t1Fn � Cp =

2666664
t 0 � � � 0 �0
�1 t � � � 0 �1
0 �1 � � � 0 �2
...

...
. . .

...
...

0 0 � � � �1 t+ �n�1

3777775
By switching rows 1 and 2 we see that this is row equivalent to2666664

�1 t � � � 0 �1
t 0 � � � 0 �0
0 �1 � � � 0 �2
...

...
. . .

...
...

0 0 � � � �1 t+ �n�1

3777775
eliminating t then gives us2666664

�1 t � � � 0 �1
0 t2 � � � 0 �0 + �1t
0 �1 � � � 0 �2
...

...
. . .

...
...

0 0 � � � �1 t+ �n�1

3777775 :

Now switch rows 2 and 3 to get2666664
�1 t � � � 0 �1
0 �1 � � � 0 �2
0 t2 � � � 0 �0 + �1t
...

...
. . .

...
...

0 0 � � � �1 t+ �n�1

3777775
and eliminate t2 2666664

�1 t � � � 0 �1
0 �1 � � � 0 �2
0 0 � � � 0 �0 + �1t+ �2t

2

...
...

. . .
...

...
0 0 � � � �1 t+ �n�1

3777775 :

Repeating this argument shows that t1Fn � Cp is row equivalent to26666664

�1 t � � � 0 �1
0 �1 � � � 0 �2

0 0
. . .

...
...

...
... �1 �n�1

0 0 � � � 0 tn + �n�1t
n�1 + � � �+ �1t+ �0

37777775 :

This implies that the characteristic polynomial is p (t) :
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To see that all eigenspaces are one dimensional we note that, if � is a root of
p (t) ; then we have just shown that �1Fn � Cp is row equivalent to the matrix26666664

�1 � � � � 0 �1
0 �1 � � � 0 �2

0 0
. . .

...
...

...
... �1 �n�1

0 0 � � � 0 0

37777775 :

Since all but the last diagonal entry is nonzero we see that the kernel must be one
dimensional. �

Cyclic subspaces lead us to a very elegant proof of the Cayley-Hamilton theo-
rem.

Theorem 22. (The Cayley-Hamilton Theorem) Let L : V ! V be a linear
operator on a �nite dimensional vector space. Then L is a root of its own charac-
teristic polynomial

�L (L) = 0:

In particular, the minimal polynomial divides the characteristic polynomial.

Proof. Select any x 6= 0 in V and a complement M to the cyclic subspace
Cx generated by x: This gives us a nontrivial decomposition V = Cx �M; where
L maps Cx to it self and M into V: If we select a basis for V that starts with the
cyclic basis for Cx; then L will have a matrix representaion that looks like

[L] =

�
Cp B
0 D

�
;

where Cp is the companion matrix representaion for L restricted to Cx: This shows
that

�L (t) = �Cp (t)�D (t)

= p (t)�D (t) :

We know that p (Cp) = 0 from the previous result. This shows that p (LjCx) = 0
and in particular that p (L) (x) = 0. Thus

�L (L) (x) = �D (L) � p (L) (x)
= 0:

Since x was arbitrary this shows that �L (L) = 0: �

We now have quite a good understanding of the basic building blocks in the
decomposition we are seeking.

Theorem 23. (The Cyclic Subspace Decomposition) Let L : V ! V be a
linear operator on a �nite dimensional vector space. Then V has a cyclic subspace
decomposition

V = Cx1 � � � � � Cxk
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where each Cx is a cyclic subspace. In particular, L has a block diagonal matrix
representation where each block is a companion matrix

[L] =

26664
Cp1 0 0
0 Cp2

. . .
0 Cpk

37775
and �L (t) = p1 (t) � � � pk (t) : Moreover the geometric multiplicity satis�es

dim (ker (L� �1V )) = number of pis such that pi (�) = 0:

In particular, we see that L is diagonalizable if and only if all of the companion
matrices Cp have distinct eigenvalues.

Proof. The proof uses induction on the dimension of the vector space. Thus
the goal is to show that either V = Cx for some x 2 V or that V = Cx �M for
some L invariant subspace M: We assume that dim (V ) = n:

Let m � n be the largest dimension of a cyclic subspace, i.e., dimCx � m
for all x 2 V and there is an x1 2 V such that dimCx1 = m: In other words
Lm (x) 2 span

�
x; L (x) ; :::; Lm�1 (x)

	
for all x 2 V and we can �nd x1 2 V such

that x1; L (x1) ; :::; Lm�1 (x1) are linearly independent.
In case m = n; it follows that Cx1 = V and we are �nished. Otherwise we must

show that there is an L invariant complement to Cx1 = span
�
x1; L (x1) ; :::; L

m�1 (x1)
	

in V: To construct this complement we consider the linear map K : V ! Fm de�ned
by

K (x) =

26664
f (x)

f (L (x))
...

f
�
Lm�1 (x)

�
37775 ;

where f : V ! F is a linear functional chosen so that

f (x1) = 0;

f (L (x1)) = 0;

...

f
�
Lm�2 (x1)

�
= 0;

f
�
Lm�1 (x1)

�
= 1:

Note that it is possible to choose such an f as x1; L (x1) ; :::; Lm�1 (x1) are linearly
independent and hence part of a basis for V:

We now claim that KjCx1 : Cx1 ! Fm is an isomorphism. To see this we �nd
the matrix representation for the restriction of K to Cx1 : Using the basis x1; L (x1) ;
:::; Lm�1 (x1) for Cx1 and the canonical basis e1; :::; em for Fm we see that:�

K (x1) K (L (x1)) � � � K
�
Lm�1 (x1)

� �
=

�
e1 e2 � � � em

� 2664
0 0 1

�
0 1
1 � �

3775
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where � indicates that we don�t know or care what the entry is. Since the matrix
representation is clearly invertible we have that KjCx1 : Cx1 ! Fm is an isomor-
phism.

Next we need to show that ker (K) is L invariant. Let x 2 ker (K) ; i.e.,

K (x) =

26664
f (x)

f (L (x))
...

f
�
Lm�1 (x)

�
37775 =

26664
0
0
...
0

37775 :
Then

K (L (x)) =

2666664
f (L (x))
f
�
L2 (x)

�
...

f
�
Lm�1 (x)

�
f (Lm (x))

3777775 =
2666664

0
0
...
0

f (Lm (x))

3777775 :
Now use the assumption that Lm (x) is a linear combination of x; L (x) ; :::; Lm�1 (x)
for all x to conclude that also f (Lm (x)) = 0: Thus L (x) 2 ker (K) as desired.

Finally we show that V = Cx1�ker (K). We have seen that KjCx1 : Cx1 ! Fm
is an isomorphism. This implies that Cx1 \ ker (K) = f0g : From the dimension
formula we then get that

dim (V ) = dim (ker (K)) + dim (im (K))

= dim (ker (K)) +m

= dim (ker (K)) + dim (Cx1)

= dim (ker (K) + Cx1) :

Thus V = Cx1 + ker (K) = Cx1 � ker (K).
To �nd the geometric multiplicity of �; we need only observe that each of

the blocks Cpi has a one dimensional eigenspace corresponding to � if � is an
eigenvalue for Cpi : We know in turn that � is an eigenvalue for Cpi precisely when
pi (�) = 0: �

It is important to understand that there can be several cyclic subspace decom-
positions. This fact, of course, makes our calculation of the geometric multiplicity
of eigenvalues especially intriguing. A rather interesting example comes from com-
panion matrices themselves. Clearly they have the desired decomposition, however,
if they are diagonalizable then the space also has a di¤erent decomposition into
cyclic subspaces given by the one dimensional eigenspaces. The issue of obtaining
a unique decomposition is discussed in the next section and turns out to fall right
out of our proof.

To see that this theorem really has something to say we should give examples of
linear maps that force the space to have a nontrivial cyclic subspace decomposition.
Since a companion matrix always has one dimensional eigenspaces this is of course
not hard at all. A very natural choice is the linear operator LA (X) = AX on
Matn�n (C) : In �Linear Maps as Matrices� in chapter 1 we showed that it had a
block diagonal form with As on the diagonal. This shows that any eigenvalue for A
has geometric multiplicity at least n: We can also see this more directly. Assume
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that Ax = �x; where x 2 Cn and consider X =
�
�1x � � � �nx

�
: Then

LA (X) = A
�
�1x � � � �nx

�
=

�
�1Ax � � � �nAx

�
= �

�
�1x � � � �nx

�
= �X:

Thus
M =

��
�1x � � � �nx

�
: �1; :::; �n 2 C

	
forms an n dimensional space of eigenvectors for LA:

Another interesting example of a cyclic subspace decomposition comes from
permutation matrices. We �rst recall that a permutation matrix A 2 Matn�n (F)
is a matrix such that Aei = e�(i); see also �Linear Maps as Matrices�in chapter 1.
We claim that we can �nd a cyclic subspace decomposition by simply rearranging
the canonical basis e1; :::; en for Fn: The proof works by induction on n:When n = 1
there is nothing to prove. For n > 1; we consider Ce1 = span

�
e1; Ae1; A

2e1; :::
	
:

Since all of the powers Ame1 all belong to the �nite set fe1; :::; eng ; we can �nd
integers k > l > 0 such that Ake1 = Ale1: Since A is invertible this implies that
Ak�le1 = e1: Now select the smallest integer m > 0 such that Ame1 = e1: Then we
have

Ce1 = span
�
e1; Ae1; A

2e1; :::; A
m�1e1

	
:

Moreover, all of the vectors e1; Ae1; A2e1; :::; Am�1e1 must be distinct as we could
otherwise �nd l < k < m such that Ak�le1 = e1: This contradicts minimality of m:
Since all of e1; Ae1; A2e1; :::; Am�1e1 are also vectors from the basis e1; :::; en; they
must form a basis for Ce1 : In this basis A is represented by the companion matrix
to p (t) = tm � 1 and hence takes the form2666664

0 0 � � � 0 1
1 0 � � � 0 0
0 1 � � � 0 0
...
...

. . .
...
...

0 0 � � � 1 0

3777775 :
The permutation that corresponds to A : Ce1 ! Ce1 is also called a cyclic per-
mutation. Evidently it maps the elements 1; � (1) ; :::; �m�1 (1) to themselves
in a cyclic manner. One often refers to such permutations by listing the ele-
ments as

�
1; � (1) ; :::; �m�1 (1)

�
: This is not quite a unique representation as, e.g.,�

�m�1 (1) ; 1; � (1) ; :::; �m�2 (1)
�
clearly describes the same permutation.

We used m of the basis vectors e1; :::; en to span Ce1 : Rename and reindex
the complementary basis vectors f1; :::; fn�m: To get our induction to work we
need to show that Afi = f�(i) for each i = 1; :::; n � m: We know that Afi 2
fe1; :::; eng : If Afi 2

�
e1; Ae1; A

2e1; :::; A
m�1e1

	
; then either fi = e1 or fi =

Ake1: The former is impossible since fi =2
�
e1; Ae1; A

2e1; :::; A
m�1e1

	
: The latter

is impossible as A leaves
�
e1; Ae1; A

2e1; :::; A
m�1e1

	
invariant. Thus it follows that

Afi 2 ff1; :::; fn�mg as desired. In this way we see that it is possible to rearrange
the basis e1; ::; en so as to get a cyclic subspace decomposition. Furthermore, on
each cyclic subspace A is represented by a companion matrix corresponding to
p (t) = tk � 1 for some k � n: Recall that if F = C; then each of these companion
matrices are diagonalizable, in particular, A is itself diagonalizable.
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Note that the cyclic subspace decomposition for a permutation matrix also
decomposes the permutation � into cyclic permutations that are disjoint. This is a
basic construction in the theory of permutations.

The cyclic subspace decomposition quali�es as a central result in linear algebra
for many reasons. While somewhat di¢ cult and tricky to prove it doesn�t depend
on quite a lot of our developments in this chapter. It could in fact be established
without knowledge of eigenvalues, charateristic polynomials and minimal polynomi-
als ect. Second, it gives a matrix representation which is in block diagonal form and
where we have a very good understanding of each of the blocks. Therefore, all of
our developements in this chapter could be considered consequences of this decom-
position. Finally, several important and di¢ cult results such as the Frobenius and
Jordan canonical forms become relatively easy to prove using this decomposition.

6.1. Exercises.

(1) Find all invariant subspaces for the following two matrices and show that
they are not diagonalizable.

(a)
�
0 1
0 0

�
(b)

�
� 1
0 �

�
(2) We say that a linear map L : V ! V is reduced by a direct sum decom-

position V =M �N if both M and N are invariant under L:We also say
that L : V ! V is decomposable if we can �nd a nontrivial decomposition
that reduces L : V ! V:

(a) Show that for L =

�
0 1
0 0

�
with M = ker (L) = im (L) it is not

possible to �nd N such that V =M �N reduces L:
(b) Show more generally that one cannot �nd a nontrivial decomposition

that reduces L:
(3) Let L : V ! V be a linear transformation and M � V a subspace. Show

(a) If E is a projection onto M and ELE = LE then M is invariant
under L:

(b) If M is invariant under L then ELE = LE for all projections onto
M:

(c) If V =M �N and E is the projection onto M along N; then M �N
reduces L if and only if EL = LE:

(4) Assume V =M �N .
(a) Show that any linear map L : V ! V has a 2 � 2 matrix type

decomposition �
A B
C D

�
where A :M !M;B :M ! N;C : N !M;D : N ! N:

(b) Show that the projection onto M along N looks like

E = 1M � 0N =
�
1M 0
0 0N

�
(c) Show that if L (M) �M; then C = 0:
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(d) Show that if L (M) � M and L (N) � N then B = 0 and C = 0: In
this case L is reduced by M �N; and we write

L = A�D
= LjM � LjN :

(5) Show that the space of n�n companion matrices form an a¢ ne subspace
isomorphic to the space of monic polynomials of degree n. A¢ ne subspaces
are de�ned in the exercises to �Subspaces�in chapter 1.

(6) Given

A =

266664
�1 1 0

0 �2
. . .
. . . 1

0 �n

377775
�nd x 2 Fn such that Cx = Fn: Hint: try n = 2; 3 �rst.

(7) Given a linear operator L : V ! V on a �nite dimensional vector space
and x 2 V show that

Cx = fp (L) (x) : p (t) 2 F [t]g :
(8) Let p (t) = tn + an�1t

n�1 + � � � + a0 2 F [t]. Show that Cp and Ctp are
similar. Hint: Let

B =

266664
a1 a2 an�1 1
a2 1 0

an�1 0 0
an�1 1
1 0 0 0

377775
and show

CpB = BCtp:

(9) Use the previous exercise to show that A 2 Matn�n (F) and its transpose
are similar.

(10) If V = Cx for some x 2 V; then deg (�L) = dim (V ) :
(11) For each n � 2 construct a matrix A 2 Matn�n (F) such that V 6= Cx for

every x 2 V:
(12) For each n � 2 construct a matrix A 2 Matn�n (F) such that V = Cx for

some x 2 V:
(13) Let L : V ! V be a diagonalizable linear operator. Show that V = Cx if

and only if there are no multiple eigenvalues.
(14) Assume that V 6= Cx1 ; where Cx1 is the �rst cyclic subspace as con-

structed in the proof of the cyclic subspace decomposition. Show that it
is possible to select another y1 2 V such that dimCy1 = dimCx1 = m;
but Cx1 6= Cy1 : This gives a di¤erent indication of why the cyclic subspace
decomposition isn�t unique.

(15) Assume that V = Cx for some x 2 V and L : V ! V:
(a) Show that K �L = L �K if and only if K = p (L) for some p 2 F [t] :
(b) Show that all invariant subspaces for L are of the form ker (p (L)) for

some polynomial p 2 F [t] :
(c) Show that all invariant subspaces for L are of the form Cz for some

z 2 V:
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(16) De�ne F [L] = fp (L) : p (t) 2 F [t]g � hom (V; V ) as the space of polyno-
mials in L:
(a) Show that F [L] is a subspace, that is also closed under composition

of operators.
(b) Show that dim (F [L]) = deg (�L) and F [L] = span

�
1V ; L; :::; L

k�1	 ;
where k = deg (�L) :

(c) Show that the map � : F [t] ! hom (V; V ) de�ned by � (p (t)) =
p (L) is linear and a ring homomorphism (preserves multiplication
and sends 1 2 F [t] to 1V 2 hom (V; V )) with image F [L] :

(d) Show that ker (�) = fp (t)�L (t) : p (t) 2 F [t]g :
(e) Show that for any p (t) 2 F [t] we have q (L) = r (L) for some r (t) 2

F [t] with deg r (t) < deg�L (t) :
(f) Given an eigenvector x 2 V for L show that x is an eigenvector for all

K 2 F [L] and that the map F [L]! F that sends K to the eigenvalue
corresponding to x is a ring homomorphism.

(g) Conversely show that any ring homomorphism � : F [L]! F is of the
type described in f.

7. The Frobenius Canonical Form

As we already indicated, the above proof of the cyclic subspace decomposition
actually proves quite a bit more than the result claims as it can actually lead us to
a unique matrix representation for the operator. The Frobenius canonical form will
be used in the next section to establish more re�nesh canonical forms for complex
operators.

Theorem 24. (The Frobenius Canonical Form) Let L : V ! V be a linear
operator on a �nite dimensional vector space. Then V has a cyclic subspace decom-
position such that the block diagonal form of L

[L] =

26664
Cp1 0 0
0 Cp2

. . .
0 Cpk

37775
has the property that pi divides pi�1 for each i = 2; :::; k: Moreover, the monic
polynomials p1; :::; pk are unique.

Proof. We �rst establish that the polynomials constructed in the above ver-
sion of the cyclic subspace decomposition have the desired divisibility properties.

Recall thatm � n is the largest dimension of a cyclic subspace, i.e., dimCx � m
for all x 2 V and there is an x1 2 V such that dimCx1 = m: In other words
Lm (x) 2 span

�
x; L (x) ; :::; Lm�1 (x)

	
for all x 2 V and we can �nd x1 2 V such

that x1; L (x1) ; :::; Lm�1 (x1) are linearly independent. With this choice of x1 we
also found an L-invariant complementary subspace M and we de�ne

p1 (t) = tm � �m�1tm�1 � � � � � �0; where
Lm (x1) = �m�1L

m�1 (x1) + � � �+ �0x1:
With these choices we claim that p1 (L) (z) = 0 for all z 2 V: In other words,

we are showing that p1 (t) = �L (t) : Note that we already know this for z = x1; and
it is easy to also verify it for z = L (x1) ; :::; L

m�1 (x1) by using that p (L) � Lk =
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Lk � p (L) : Thus we only need to check the claim for z 2M: By construction of m
we know that

Lm (x1 + z) = 
m�1L
m�1 (x1 + z) + � � �+ 
0 (x1 + z) :

Now we rearrage the terms as follows

Lm (x1) + L
m (z) = Lm (x1 + z)

= 
m�1L
m�1 (x1) + � � �+ 
0x1

+
m�1L
m�1 (z) + � � �+ 
0z

Since
Lm (x1) ; 
m�1L

m�1 (x1) + � � �+ 
0x1 2 Cx1
and

Lm (z) ; 
m�1L
m�1 (z) + � � �+ 
0z 2M

we must have that


m�1L
m�1 (x1) + � � �+ 
0x1 = Lm (x1) = �m�1L

m�1 (x1) + � � �+ �0x1:

Since x1; L (x1) ; :::; Lm�1 (x1) are linearly independent this shows that 
i = �i for
i = 0; :::;m� 1: But then we have that

0 = p1 (L) (x1 + z)

= p1 (L) (x1) + p1 (L) (z)

= p1 (L) (z) ;

which is what we wanted to prove.
Now x2 2M and p2 (t) are choosen in the same fashion as x1 and p1. We �rst

note that l = deg p2 � deg p1 = m; this means that we can write p1 = q1p2 + r;
where deg r < deg p2: Thus

0 = p1 (L) (x2)

= q1 (L) � p2 (L) (x2) + r (L) (x2)
= r (L) (x2) :

Since deg r < l = deg p2; the equation r (L) (x2) = 0 takes the form

0 = r (L) (x2)

= �0x2 + � � �+ �k�1Ll�1 (x2) :

However, p2 was choosen to that x2; L (x1) ; :::; Ll�1 (x2) are linearly independent,
so

�0 = � � � = �l�1 = 0

and hence also r = 0: This shows that p2 divides p1:
We now show that p1 and p2 are unique, this, despite the fact that x1 and x2

need not be unique. To see that p1 is unique we simply check that it is the minimal
polynomial of L: We have already seen that p1 (L) (z) = 0 for all z 2 V: Thus
p1 (L) = 0 showing that deg�L � deg p1. On the other hand we also know that
x1; L (x1) ; :::; L

m�1 (x1) are linearly independent, in particular 1V ; L; :::; Lm�1

must also be linearly independent. This shows that deg�L � m = deg p1: Hence
�L = p1 as they are both monic.
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To see that p2 is unique is a bit more tricky since the choice for Cx1 is not
unique. We select two decompositions

Cx01 �M
0 = V = Cx1 �M:

This yields two block diagonal matrix decompositions for L�
Cp1 0
0 [LjM 0 ]

�
�
Cp1 0
0 [LjM ]

�
where the upper left hand block is the same for both representations as p1 is unique.
Moreover, these two matrices are similar. Therefore we only need to show that
�A22

= �A0
22
if the two block diagonal matrices�

A11 0
0 A22

�
and

�
A11 0
0 A022

�
are similar �

A11 0
0 A22

�
= B�1

�
A11 0
0 A022

�
B:

If p is any polynomial, then�
p (A11) 0
0 p (A22)

�
= p

��
A11 0
0 A22

��
= p

�
B�1

�
A11 0
0 A022

�
B

�
= B�1

�
p

��
A11 0
0 A022

���
B

= B�1
�
p (A11) 0
0 p (A022)

�
B:

In particular, the two matrices�
p (A11) 0
0 p (A22)

�
and

�
p (A11) 0
0 p (A022)

�
always have the same rank. Since the upper left hand corners are identical this
shows that p (A22) and p (A022) have the same rank. As a special case we see that
p (A22) = 0 if and only if p (A022) = 0: This shows that A22 and A

0
22 have the same

minimal polynomials and hence that p2 is uniquely de�ned. �

In some texts this is also known as the rational canonical form. The reason
is that it will have rational entries if we start with an n � n matrix with rational
entries. To see why this is, simply observe that the similarity invaraints have
to be rational polynomials starting with p1; the minimal polynomial. There can,
however, be several rational canonical forms. Another comes from further factoring
the characteristic or minimal polynomials and will have more blocks. The advantage
of the Frobenius canonical from is that it does not depend on the scalar �eld. That
is, if A 2 Matn�n (F) � Matn�n (L) then the form doesn�t depend on whether we
compute it using F or L:

The unique polynomials p1; :::; pk are called the similarity invariants, elemen-
tary divisors, or invariant factors for L: Clearly two matrices are similar if they
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have the same similarity invariants as they have the same Frobenious canonical
form. Conversely similar matrices are both similar to just one Frobenius canoni-
cal form and hence have the same similarity invariants. It is possible to calculate
the similarity invariants using only the elementary row and column operations.
The speci�c algorithm leads to the Smith Normal Form (see [Ho¤man-Kunze]
and [Serre].) The treatment here doesn�t give us a good way of calculating the
similarity invariants.

The following corollary shows that several of the matrices realted to companion
matrices are in fact similar. Various exrcises have been devoted to establishing this
fact, but using the Frobenius canonical form we get a very elegant characterization
of when a linear map is similar to a companion matrix.

Corollary 17. If two linear operators on an n-dimensional vector space have
the same minimal polynomials of degree n; then they have the same Frobenius canon-
ical form and are similar.

Given that the similarity invariants are uniquely de�ned we can now de�ne the
characteristic polynomial as

�L (t) = p1 (t) � � � pk (t) :

This gives us a way of de�ning the characteristic polynomial, but it doesn�t tells us
how to compute it. For that the row reduction technique or determinants are the
way to go. To be even more asinine we can now de�ne the determinant as

detL = (�1)n �L (0) :

The problem is that one of the key properties of determinants

det (K � L) = det (K) det (L)

does not follow easily from this de�nition. We do, however, get that similar matrices
and linear operators have the same determinant

det
�
K � L �K�1� = det (L) :

As a general sort of example let us see what the Frobenius canonical form for

A =

�
Cq1 0
0 Cq2

�
is, when q1 and q2 are relatively prime. Note that if

0 = p (A) =

�
p (Cq1) 0
0 p (Cq2)

�
;

then both q1 and q2 divide p: Conversely if q1 and q2 both divide p it also follows
that p (A) = 0: Since the least common multiple of q1 and q2 is q1 � q2 we see that
�A = q1 � q2 = �A: Thus p1 = q1 � q2 and p2 = 1: This shows that the Frobenius
canonical form is simply Cq1�q2 : The general case where there might be a nontrivial
greatest common divisor is relegated to the exercises.

We now give a few examples showing that the characteristic and minimal poly-
nomials alone are not su¢ cient information to determine all the similarity invariants
when the dimension is � 4 (see exercises for dimensions 2 and 3). We consider all
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canonical forms in dimension 4, where the characteristic polynomial is t4: There
are four nontrivial cases given by:2664

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

3775 ;
2664
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

3775 ;
2664
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3775 ;
2664
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

3775
For the �rst we know that � = p1 = t4: For the second we have two blocks with
� = p1 = t3 so p2 = t: For the third we have � = p1 = t2 while p2 = p3 = t: Finally
the fourth has � = p1 = p2 = t2: The last two matrices clearly don�t have the same
canonical form, but they do have the same characteristic and minimal polynomials.

Lastly let us compute the Frobenius Canonical form for a projection E : V ! V:
As we shall see this is clearly a situation where we should just stick to diagonal-
ization as the Frobenius canonical form is far less informative. Apparently we just
need to �nd all possible Frobenius canonical forms that are also projections. The
simplest are of course just 0V and 1V : In all other cases the minimal polynomial is
t2 � t: The companion matrix for that polynomial is�

0 0
1 1

�
so we expect to have one or several of those blocks, but note that we can�t have more
than

�
dimV
2

�
of such blocks. The rest of the diagonal entries must now correspond

to companion matrices for either t or t � 1: But we can�t use both as these two
polynomials don�t divide each other. This gives us two types of Frobenius canonical
forms 26666666666664

0 0
1 1

. . .
0 0
1 1

0
. . .

0

37777777777775
or 26666666666664

0 0
1 1

. . .
0 0
1 1

1
. . .

1

37777777777775
To �nd the correct canonical form for E we just select the Frobenius canonical form
that gives us the correct rank. If rankE �

�
dimV
2

�
it�ll be of the �rst type and

otherwise of the second.
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7.1. Exercises.

(1) What are the similarity invariants for a companion matrix Cp?
(2) Let A 2 Matn�n (R) ; and n � 2:

(a) Show that when n is odd, then it is not possible to have p1 (t) = t2+1:
(b) Show by example that one can have p1 (t) = t2 + 1 for all even n:
(c) Show by example that one can have p1 (t) = t3 + t for all odd n:

(3) If L : V ! V is an operator on a 2-dimensional space, then either p1 =
�L = �L (and p2 = 1) or L = �1V :

(4) If L : V ! V is an operator on a 3-dimensional space, then either p1 =
�L = �L (and p2 = 1), p1 = (t� �) (t� �) and p2 = (t� �) ; or L = �1V :
Note that in the second case you know that p1 has degree 2, the key is to
show that it factors as described.

(5) Let L : V ! V be a linear operator a �nite dimensional space. Show that
V = Cx for some x 2 V if and only if �L = �L:

(6) Consider two companion matrices Cp and Cq; show that the similarity
invariants for the block diagonal matrix�

Cp 0
0 Cq

�
are p1 = lcm fp; qg and p2 = gcd fp; qg :

(7) Is it possible to �nd the similarity invariants for24 Cp 0 0
0 Cq 0
0 0 Cr

35?
Note that you can easily �nd p1 = lcm fp; q; rg, so the issue is whether it
is possible to decide what p2 should be?

(8) Show that A;B 2 Matn�n (F) are similar if and only if rank (p (A)) =
rank (p (B)) for all p 2 F [t] : (Recall that two matrices have the same rank
if and only if they are equivalent and that equivalent matrices certainly
need not be similar. This is what makes the exercise interesting.)

(9) The previous exercise can be made into a checkable condition: Show that
A;B 2 Matn�n (F) are similar if and only if �A = �B and rank (p (A)) =
rank (p (B)) for all p that divide �A: (Using that as �A has a unique
prime factorization this means that we only have to check a �nite number
of conditions.)

(10) Show that any linear map with the property that �L (t) = (t� �1) � � � (t� �n) 2
F [t] for �1; :::; �n 2 F has an upper triangular matrix representation. Hint:
This was established for some matrices in an exercise from �Eigenvalues�.

(11) Let L : V ! V be a linear operator on a �nite dimensional vector space.
Use the Frobenius canonical from to show that tr (L) = �an�1; where
�L (t) = tn+ an�1t

n�1+ � � �+ a0: This is the result mentioned in �Eigen-
values�.

(12) Assume that L : V ! V satis�es (L� �01V )k = 0; for some k > 1; but
(L� �01V )k�1 6= 0: Show that ker (L� �01V ) is neither f0g nor V: Show
that ker (L� �01V ) does not have a complement in V that is L invariant.

(13) (The Cayley-Hamilton Theorem) Show the Hamilton-Cayley Theorem us-
ing the Frobenius canonical form.
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8. The Jordan Canonical Form

In this section we freely use the Frobenius Canonical form to present a proof
the Jordan canonical form. We start with a somewhat more general view point,
that in the end is probably the most important feature of this special canonical
form. It reuires the use of the last exercise in �Diagonalizability�.

Theorem 25. (The Jordan-Chevalley decomposition) Let L : V ! V be a
linear operator on an n-dimensional complex vector space. Then L = S+N; where
S is diagonalizable, Nn = 0; and SN = NS:

Proof. First we use the Fundamental theorem of algebra to decompose the
minimal polynomial

mL (t) = (t� �1)m1 � � � (t� �k)mk

The last exercise in �Diagonalizability�then gives us a corresponding L invariant
decomposition of the vector space

V = ker (L� �11V )m1 � � � � � ker (L� �k1V )mk

This means that we have reduced the problem to a situation where L has only one
eigenvalue. Given the Frobenius canonical form the problem is then further reduced
to proinge the statement for companion matrices, where the minimal polynomial
has only one root.. Let Cp be a companion matrix with

p (t) = (t� �)n :

Then construct the matrix

A = D +N

=

26664
� 0 � � � 0
0 �
...

. . .
0 �

37775+
266664
0 1 � � � 0

0 0
. . .

...
. . . 1

0 0

377775

=

266664
� 1 � � � 0

0 �
. . .

...
. . . 1

0 �

377775 :
We know from �The Minimal Polynomial�that �A = �Cp = p (t) : Since the degree
of the minimal polynomial is maximal we see that the Frobenius canonical from for
A is Cp, showing that Cp is similar to A: Then it only remains to observe that D is
diagonal, Nn = 0; and DN = ND to establish the Jordan-Chevalley decomposition
for Cp: �

It is in fact possible to show that the Jordan-Chevalley decomposition is unique.
This hinges on showing that S and N are polynomials in L; i.e., S = p (L) and
N = q (L) ; where p and q are polynomials that depend on L: We won�t show this
here, but knowing this makes it quite simple to establish uniqueness (see exercises).

As a corollary we obtain
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Lemma 17. Let Cp be a companion matrix with p (t) = (t� �)n : Then Cp is
similar to a Jordan block

[L] =

26666666664

� 1 0 � � � 0 0
0 � 1 � � � 0 0

0 0 �
. . .

...
...

0 0 0
. . . 1 0

...
...

... � � � � 1
0 0 0 � � � 0 �

37777777775
:

Moreover the eigenspace for � is 1-dimensional and is generated by the �rst basis
vector.

Note that in a Jordan block all of the diagonal entries are the same. This was
not necessarily the case for the matrices in the Jordan-Chevalley decomposition.

We can now give a simple proof of the Jordan canonical form. Weierstrass
evidently also proved this theorem at about the same time and so also deserves to
get credit.

Theorem 26. (The Jordan-Weierstrass Canonical form) Let L : V ! V be
a complex linear operator on a �nite dimensional vector space. Then we can �nd
L-invariant subspaces M1; ::::;Ms such that

V =M1 � � � � �Ms

and each LjMi has a matrix representation of the form26666664

�i 1 0 � � � 0
0 �i 1 � � � 0

0 0 �i
. . .

...
...

...
...

. . . 1
0 0 0 � � � �i

37777775
where �i is an eigenvalue for L:

Proof. First we use the Jordan-Chevalley decomposition L = S + N to de-
compose the vector space into eigenspaces for S

V = ker (S � �11V )� � � � � ker (S � �k1V ) :

Each of these eigenspaces is invariant for N since S and N commute. Speci�cally
if S (x) = �x; then

S (N (x)) = N (S (x)) = N (�x) = �N (x) ;

showing that N (x) is also an eigenvector for the eigenvalue �:
This reduces the problem to showing that operators of the form �1W + N;

where Nn = 0 have the desired decomposition. Since the homothety �1W is always
diagonal in any basis, we are further reduced to showing the theorem holds for
operators N such that Nn = 0: The similarity invariants for such an operator all
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have to look like tk so the blocks in the Frobenius canonical form must look like266664
0 0 � � � 0

1 0
. . .

...
. . .

. . . 0
0 1 0

377775 :
If e1; :::; ek is the basis yielding this matrix representation then

N
�
e1 � � � ek

�
=

�
e2 � � � ek 0

�

=
�
e1 � � � ek

�
266664
0 0 � � � 0

1 0
. . .

...
. . .

. . . 0
0 1 0

377775 :
Reversing the basis to ek; :::; e1 then gives us the desired block

N
�
ek � � � e1

�
=

�
0 ek � � � e2

�

=
�
ek � � � e1

�
266664
0 1 � � � 0

0 0
. . .

...
. . . 1

0 0

377775 :
�

In this decomposition it is possible for several of the subspaces Mi to corre-
spond to the same eigenvalue. Given that the eigenspace for each Jordan block is
one dimensional we see that each eigenvalue corresponds to as many blocks as the
geometric multiplicity of the eigenvalue. It is only when L is similar to a companion
matrix that the blocks must correspond to distinct eigenvalues. The job of calcu-
lating the Jordan canonical form is in general quite hard. Here we con�ne ourselves
to the 2 and 3 dimensional situations.

Corollary 18. Let L : V ! V be a complex linear operator where dim (V ) =
2: Either L is diagonalizable and there is a basis where

[L] =

�
�1 0
0 �2

�
;

or L is not diagonalizable and there is a basis where

[L] =

�
� 1
0 �

�
:

Note that in case L is diagonalizable we either have that L = �1V or that the
eigenvalues are distinct. In the nondiagonalizable case there is only one eigenvalue.

Corollary 19. Let L : V ! V be a complex linear operator where dim (V ) =
3: Either L is diagonalizable and there is a basis where

[L] =

24 �1 0 0
0 �2 0
0 0 �3

35 ;
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or L is not diagonalizable and there is a basis where one of the following two situ-
ations occur

[L] =

24 �1 0 0
0 �2 1
0 0 �2

35 ;
or

[L] =

24 � 1 0
0 � 1
0 0 �

35 :
It is possible to check which of these situations occur by knowing the minimal

and characteristic polynomials. We note that the last case happens precisely when
there is only one eigenvalue with geometric multiplicity 1. The second case happens
if either L has two eigenvalues each with geometric multiplicity 1 or if L has one
eigenvalue with geometric multiplicity 2.

8.1. Exercises.
(1) Find the Jordan canonical forms for the matrices�

1 0
1 1

�
;

�
1 1
0 2

�
;

�
2 �1
4 �2

�
(2) Find the basis that yields the Jordan canonical form for�

� �1
�2 ��

�
:

(3) Find the Jordan canonical form for the matrix�
�1 1
0 �2

�
:

Hint: the answer depends on the relationship between �1 and �2:
(4) Find the Jordan canonical forms for the matrix�

0 1
��1�2 �1 + �2

�
:

(5) Find the Jordan canonical forms for the matrix24 �2 �2� 1

�3 �2�2 �

�4 �2�3 �2

35
(6) Find the Jordan canonical forms for the matrix24 �1 1 0

0 �2 1
0 0 �3

35 :
(7) Find the Jordan canonical forms for the matrix24 0 1 0

0 0 1
�1�2�3 � (�1�2 + �2�3 + �1�3) �1 + �2 + �3

35 :
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(8) Find the Jordan canonical forms for the matrices24 0 1 0
0 0 1
2 �5 4

35 ;
24 0 1 0
0 0 1
1 �3 3

35 ;
24 0 1 0
0 0 1
6 �11 6

35 :
(9) An operator L : V ! V is said to be nilpotent if Lk = 0 for some k:

(a) Show that �L (t) = tn:
(b) Show that L can be put in triangular form.
(c) Show that L is diagonalizable if and only if L = 0:
(d) Find a real matrix all of whose real eigenvalues are 0; but which is

not nilpotent.
(10) Let L : V ! V be a linear operator on an n-dimensional complex vector

space. Show that for p 2 C [t] the operator p (L) is nilpotent if and only
if the eigenvalues of L are roots of p: What goes wrong in the real case
when p (t) = t2 + 1 and dimV is odd?

(11) If

ker
�
(L� �1V )k

�
6= ker

�
(L� �1V )k�1

�
;

then the algebraic multiplicity of � is � k: Given an example where the
algebraic multiplicity > k and

ker
�
(L� �1V )k+1

�
= ker

�
(L� �1V )k

�
6= ker

�
(L� �1V )k�1

�
:

(12) Show that if L : V ! V is a linear operator such that

�L (t) = (t� �1)n1 � � � (t� �k)nk ;
�L (t) = (t� �1)m1 � � � (t� �k)mk ;

then mi corresponds to the largest Jordan block that has �i on the diag-
onal. Next show that mi is the �rst integer such that

ker ((L� �i1V )mi) = ker
�
(L� �i1V )mi+1

�
:

(13) Show that if L : V ! V is a linear operator on an n-dimensional complex
vector space with distinct eigenvalues �1; :::; �k; then p (L) = 0; where

p (t) = (t� �1)n�k+1 � � � (t� �k)n�k+1 :
Hint: Try k = 2:

(14) Assume that L = S + N = S0 + N 0 are two Jordan-Chevalley decom-
positions, i.e., SN = NS; S0N 0 = N 0S0; S; S0 are diagonalizable, and
Nn = (N 0)

n
= 0: Show that S = S0 and N = N 0 if we know that

S = p (L) and N = q (L) for polynomials p and q:



CHAPTER 3

Inner Product Spaces

So far we have only discussed vector spaces without adding any further structure
to the space. In this chapter we shall study so called inner product spaces. These
are vector spaces were in addition we know the length of each vector and the angle
between two vectors. Since this is what we are used to from the plane and space it
would seem like a reasonable extra layer of information.

We shall cover some of the basic constructions such as Gram-Schmidt orthog-
onalization, orthogonal projections, and orthogonal complements. In addition we
prove the Cauchy-Schwarz and Bessel inequalities. In the last sections we cover
the adjoint of linear maps and how it helps us understand the connections between
inmage and kernel ultimately yielding a very interesting characterization of orthog-
onal projections. Finally we also explain matrix exponentials and how they can be
used to solve systems of linear di¤erential equations.

In this and the following chapter vector spaces always have either real or com-
plex scalars.

1. Examples of Inner Products

1.1. Real Inner Products. We start by considering the (real) plane R2 =
f(�1; �2) : �1; �2 2 Rg : The length of a vector is calculated via the Pythagorean
theorem:

k(�1; �2)k =
q
�21 + �

2
2:

The angle between two vectors x = (�1; �2) and y = (�1; �2) is a little trickier to
compute. First we normalize the vectors

1

kxkx;

1

kyky

so that they lie on the unit circle. We then trace the arc on the unit circle between
the vectors in order to �nd the angle �. If x = (1; 0) the de�nitions of cosine and
sine tell us that this angle can be computed via

cos � =
�1
kyk ;

sin � =
�2
kyk

This suggests that, if we de�ne

155
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cos �1 =
�1
kxk ; sin �1 =

�2
kxk ;

cos �2 =
�1
kyk ; sin �2 =

�2
kyk ;

then

cos � = cos (�2 � �1)
= cos �1 cos �2 + sin �1 sin �2

=
�1�1 + �2�2
kxk � kyk :

So if the inner or dot product of x and y is de�ned by

(xjy) = �1�1 + �2�2;

then we obtain the relationship

(xjy) = kxk kyk cos �:

The length of vectors can also be calculated via

(xjx) = kxk2 :

The (xjy) notation is used so as not to confuse the expression with pairs of vectors
(x; y) : One also often sees hx; yi or hxjyi used for inner products.

The key properties that we shall use to generalize the idea of an inner product
are:

(1) (xjx) = kxk2 > 0 unless x = 0:
(2) (xjy) = (yjx) :
(3) x! (xjy) is linear.
One can immediately generalize this algebraically de�ned inner product to R3

and even Rn by

(xjy) =

0B@
264 �1

...
�n

375
�������
264 �1

...
�n

375
1CA

= xty

=
�
�1 � � � �n

� 264 �1
...
�n

375
= �1�1 + � � �+ �n�n:

The three above mentioned properties still remain true, but we seem to have lost
the connection with the angle. This is settled by observing that Cauchy�s inequality
holds:

(xjy)2 � (xjx) (yjy) ; or
(�1�1 + � � �+ �n�n)

2 �
�
�21 + � � �+ �2n

� �
�21 + � � �+ �2n

�
:

In other words

�1 � (xjy)
kxk kyk � 1:
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This implies that the angle can be rede�ned up to sign through the equation

cos � =
(xjy)
kxk kyk :

In addition, as we shall see, the three properties can be used as axioms to prove
everything we wish.

Two vectors are said to be orthogonal or perpendicular if their inner product
vanishes. With this de�nition the proof of the Pythagorean Theorem becomes
completely algebraic:

kxk2 + kyk2 = kx+ yk2 ;
if x and y are orthogonal. To see why this is true note that the properties of the
inner product imply:

kx+ yk2 = (x+ yjx+ y)
= (xjx) + (yjy) + (xjy) + (yjx)
= (xjx) + (yjy) + 2 (xjy)
= kxk2 + kyk2 + 2 (xjy) :

Thus the relation kxk2 + kyk2 = kx+ yk2 holds precisely when (xjy) = 0:
The inner product also comes in handy in expressing several other geometric

constructions.
The projection of a vector x onto the line in the direction of y is given by

projy (x) =

�
x

���� ykyk
�

y

kyk

=
(xjy) y
(yjy) :

All planes that have normal n; i.e., are perpendicular to n; are de�ned by an

equation
(xjn) = c

for some c. The c is determined by any point x0 that lies in the plane: c = (x0jn) :
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1.2. Complex Inner Products. Let us now see what happens if we try to
use complex scalars. Our geometric picture seems to disappear, but we shall insist
that the real part of a complex inner product must have the (geometric) properties
we have already discussed. Let us start with the complex plane C: Recall that if
z = �1+�2i; then the complex conjugate is the re�ection of z in the 1st coordinate
axis and is de�ned by �z = �1 � �2i: Note that z ! �z is not complex linear but
only linear with respect to real scalar multiplication. Conjugation has some further
important properties

kzk =
p
z � �z;

z � w = �z � �w;

z�1 =
�z

kzk2

Re (z) =
z + �z

2

Im (z) =
z � �z
2i

Given that kzk2 = z�z it seems natural to de�ne the complex inner product by
(zjw) = z �w: Thus it is not just complex multiplication. If we take the real part we
also note that we retrieve the real inner product de�ned above

Re (zjw) = Re (z �w)

= Re ((�1 + �2i) (�1 � �2i))
= �1�1 + �2�2:

Having established this we should be happy and just accept the nasty fact that
complex inner products include conjugations.

The three important properties for complex inner products are

(1) (xjx) = kxk2 > 0 unless x = 0:
(2) (xjy) = (yjx):
(3) x! (xjy) is complex linear.
The inner product on Cn is de�ned by

(xjy) =

0B@
264 �1

...
�n

375
�������
264 �1

...
�n

375
1CA

= xt�y

=
�
�1 � � � �n

� 264
��1
...
��n

375
= �1��1 + � � �+ �n��n:

If we take the real part of this inner product we get the inner product on R2n ' Cn:
We say that two complex vectors are orthogonal if their inner product vanishes.

This is not quite the same as in the real case, as the two vectors 1 and i in C are not
complex orthogonal even though they are orthogonal as real vectors. To spell this
out a little further let us consider the Pythagorean Theorem for complex vectors.
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Note that

kx+ yk2 = (x+ yjx+ y)
= (xjx) + (yjy) + (xjy) + (yjx)
= (xjx) + (yjy) + (xjy) + (xjy)
= kxk2 + kyk2 + 2Re (xjy)

Thus only the real part of the inner product needs to vanish for this theorem to
hold. This should not come as a surprise as we already knew the result to be true
in this case.

1.3. A Digression on Quaternions�. Another very interesting space that
contains some new algebra as well as geometry is C2 ' R4: This is the space-time of
special relativity. In this short section we mention some of the important features
of this space.

In analogy with writing C =spanR f1; ig let us de�ne
H = spanC f1; jg

= spanR f1; i; 1 � j; i � jg
= spanR f1; i; j; kg :

The three vectors i; j; k form the usual basis for the three dimensional space R3: The
remaining coordinate in H is the time coordinate. In H we also have a conjugation
that changes the sign in front of the imaginary numbers i; j; k

�q = �0 + �1i+ �2j + �3k

= �0 � �1i� �2j � �3k:
To make perfect sense of things we need to �gure out how to multiply i; j; k: In line
with i2 = �1 we also de�ne j2 = �1 and k2 = �1: As for the mixed products we
have already de�ned ij = k: More generally we can decide how to compute these
products by using the cross product in R3: Thus

ij = k = �ji;
jk = i = �kj;
ki = j = �ik:

This enables us to multiply q1; q2 2 H: The multiplication is not commutative, but
it is associative (unlike the cross product) and nonzero elements have inverses. The
fact that the imaginary numbers i; j; k anti-commute shows that conjugation must
reverse the order of multiplication (like taking inverses of matrices and quaternions)

pq = �q�p:

As with real and complex numbers we have that

q�q = jqj2 = �20 + �
2
1 + �

2
2 + �

2
3:

This shows that every non-zero quaternion has an inverse given by

q�1 =
�q

jqj2
:

The space H with usual vector addition and this multiplication is called the space
of quaternions. The name was chosen by Hamilton who invented these numbers
and wrote voluminous material on their uses.
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As with complex numbers we have a real part, namely, the part without i; j; k;
that can be calculated by

Re q =
q + �q

2

The usual real inner product on R4 can now be de�ned by

(pjq) = Re (p � �q) :
If we ignore the conjugation but still take the real part we obtain something else
entirely

(pjq)1;3 = Re pq

= Re (�0 + �1i+ �2j + �3k) (�0 + �1i+ �2j + �3k)

= �0�0 � �1�1 � �2�2 � �3�3:
We note that restricted to the time axis this is the usual inner product while if
restrict to the space part it is the negative of the usual inner product. This pseudo-
inner product is what is used in special relativity. The subscript 1,3 refers to the
signs that appear in the formula, 1 plus and 3 minuses.

Note that one can have (qjq)1;3 = 0 without q = 0: The geometry of such an
inner product is thus quite di¤erent from the usual ones we introduced above.

The purpose of this very brief encounter with quaternions and space-times is
to show that they appear quite natuarlly in the context of linear algebra. While we
won�t use them here, they are used quite a bit in more advanced mathematics and
physics..

1.4. Exercises.
(1) Using the algebraic properties of inner products show the law of cosines

c2 = a2 + b2 � 2ab cos �;
where a and b are adjacent sides in a triangle forming an angle � and c is
the opposite side.

(2) Here are some matrix constructions of both complex and quaternion num-
bers.
(a) Show that C is isomorphic (same addition and multiplication) to the

set of real 2� 2 matrices of the form�
� �
�� �

�
:

(b) Show that H is isomorphic to the set of complex 2 � 2 matrices of
the form �

z w
� �w �z

�
:

(c) Show that H is isomorphic to the set of real 4� 4 matrices�
A B
�Bt At

�
that consists of 2� 2 blocks

A =

�
� �
�� �

�
; B =

�

 �
�� 


�
:



2. INNER PRODUCTS 161

(d) Show that the quaternionic 2� 2 matrices of the form�
p q
��q �p

�
form a real vector space isomorphic to R8; but that matrix multipli-
cation doesn�t necessarily give us a matrix of this type.

(3) If q 2 H consider the map Adq : H! H de�ned by Adq (x) = qxq�1:
(a) Show that x = 1 is an eigenvector with eigenvalue 1.
(b) Show that Adq maps spanR fi; j; kg to itself and de�nes an isometry

on R3:
(c) If we assume jqj2 = 1; then Adq1 = Adq2 if and only if q1 = �q2:

2. Inner Products

Recall that we only use real or complex vector spaces. Thus the �eld F of
scalars is always R or C: An inner product on a vector space V over F is an F
valued pairing (xjy) for x; y 2 V; i.e., a map (xjy) : V � V ! F; that satis�es:

(1) (xjx) � 0 and vanishes only when x = 0:
(2) (xjy) = (yjx):
(3) For each y 2 V the map x! (xjy) is linear.
A vector space with an inner product is called an inner product space. In

the real case the inner product is also called a Euclidean structure, while in the
complex situation the inner product is known as a Hermitian structure. Observe
that a complex inner product (xjy) always de�nes a real inner product Re (xjy)
that is symmetric and linear with respect to real scalar multiplication. One also
uses the term dot product for the standard inner products in Rn and Cn: The term
scalar product is also used quite often as a substitute for inner product. In fact this
terminology seems better as it explains that the product of two vectors becomes a
scalar.

We note that the second property really only makes sense when the inner
product is complex valued. If V is a real vector space, then the inner product is
real valued and hence symmetric in x and y: In the complex case property 2 implies
that (xjx) is real, thus showing that the condition in property 1 makes sense. If we
combine the second and third conditions we get the sesqui-linearity properties:

(�1x1 + �2x2jy) = �1 (x1jy) + �2 (x2jy) ;
(xj�1y1 + �2y2) = ��1 (xjy1) + ��2 (xjy2) :

In particular we have the scaling property

(�xj�x) = ��� (xjx)
= j�j2 (xjx) :

We de�ne the length or norm of a vector by

kxk =
p
(xjx):

In case (xjy) is complex we see that (xjy) and Re (xjy) de�ne the same norm.
Note that jjxjj is nonnegative and only vanishes when x = 0: We also have the
scaling proerty jj�xjj = j�j jjxjj : The triangle inequality jjx+ yjj � jjxjj + jjyjj
will be established later in this section after some important preparatory work.
Before studying the properties of inner products further let us list some important



162 3. INNER PRODUCT SPACES

examples. We already have what we shall refer to as the standard inner product
structures on Rn and Cn:

Example 63. If we have an inner product on V; then we also get an inner
product on all of the subspaces of V:

Example 64. If we have inner products on V and W; both with respect to F;
then we get an inner product on V �W de�ned by

((x1; y1) j (x2; y2)) = (x1jx2) + (y1jy2) :
Note that (x; 0) and (0; y) always have zero inner product.

Example 65. Given that Matn�m (C) = Cn�m we have an inner product on
this space. As we shall see it has an interesting alternate construction. Let A;B 2
Matn�m (C) the transpose Bt 2 Matm�n (C) of B is simply the matrix were rows
and columns are interchanged, i.e.,

Bt =

264 �11 � � � �1m
...

. . .
...

�n1 � � � �nm

375
t

=

264 �11 � � � �n1
...

. . .
...

�1m � � � �nm

375 :
The adjoint B� is the transpose combined with conjugating each entry

B� =

264
��11 � � � ��n1
...

. . .
...

��1m � � � ��nm

375 :
The inner product (AjB) can now be de�ned as

(AjB) = trAB�

= trB�A:

In case m = 1 we have Matn�1 (C) = Cn and we recover the standard inner product
from the number B�A: In the general case we note that it also de�nes the usual inner
product as

(AjB) = trAB�

=
X
i;j

�ij��ij :

Example 66. Let V = C0 ([a; b] ;C) and de�ne

(f jg) =
Z b

a

f (t) �g (t) dt:

Then
kfk2 =

p
(f; f):

If V = C0 ([a; b] ;R) ; then we have the real inner product

(f jg) =
Z b

a

f (t) g (t) dt
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In the above example it is often convenient to normalize the inner product so that
the function f = 1 is of unit length. This normalized inner product is de�ned as

(f jg) = 1

b� a

Z b

a

f (t) �g (t) dt:

Example 67. Another important in�nite dimensional inner product space is
the space `2 �rst investigated by Hilbert. It is the collection of all real or complex
sequences (�n) such that

P
n j�nj

2
<1: We have not speci�ed the index set n, but

we always think of it as being N; N0; or Z: If we wish to specify the index set we will
use the notation `2 (N) etc. Because these index sets are all bijectively equivalent
they all the de�ne the same space but with di¤erent indices for the coordinates �n:
Addition and scalar multiplication are de�ned by

(�n) + (�n) = (�n + �n) ;

� (�n) = (��n) :

Since X
n

j��nj2 = j�j2
X
n

j�nj2 ;X
n

j�n + �nj
2 �

X
n

�
2 j�nj2 + 2 j�nj

2
�

= 2
X
n

j�nj2 + 2
X
n

j�nj
2

it follows that `2 is a subspace of the space of all sequences. The inner product
((�n) j (�n)) is de�ned by

((�n) j (�n)) =
X
n

�n��n:

For that to make sense we need to know thatX
n

���n��n�� <1:
This follows from ���n��n�� = j�nj

����n��
= j�nj j�nj
� j�nj2 + j�nj

2

and the fact that X
n

�
j�nj2 + j�nj

2
�
<1:

We declare that two vectors x and y are orthogonal or perpendicular if (xjy) = 0
and we denote this by x ? y: The proof of the Pythagorean Theorem for both Rn
and Cn clearly carries over to this more abstract situation. So if (xjy) = 0; then
kx+ yk2 = kxk2 + kyk2 :
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The orthogonal projection of a vector x onto a nonzero vector y is de�ned by

projy (x) =

�
x

���� ykyk
�

y

kyk

=
(xjy)
(yjy)y:

This projection creates a vector in the subspace spanned by y. The fact that it
makes sense to call it the orthogonal projection is explained in the next proposition.

Proposition 20. Given a nonzero y the map x ! projy (x) is linear and a
projection with the further property that x�projy (x) and projy (x) are orthogonal.
In particular

kxk2 =


x� projy (x)

2 + 

projy (x)

2 ;

and 

projy (x)

 � kxk :
Proof. The de�nition of projy (x) immediately implies that it is linear from

the linearity of the inner product. That it is a projection follows from

projy
�
projy (x)

�
= projy

�
(xjy)
(yjy)y

�
=

(xjy)
(yjy) projy (y)

=
(xjy)
(yjy)

(yjy)
(yjy)y

=
(xjy)
(yjy)y

= projy (x) :
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To check orthogonality simply compute

�
x� projy (x) jprojy (x)

�
=

�
x� (x; y)

(y; y)
y

���� (x; y)(y; y)
y

�
=

�
x

���� (xjy)(yjy)y
�
�
�
(xjy)
(yjy)y

���� (xjy)(yjy)y
�

=
(xjy)
(yjy) (xjy)�

j(xjy)j2

j(yjy)j2
(yjy)

=
j(xjy)j2

(yjy) �
j(xjy)j2

(yjy)
= 0:

The Pythagorean Theorem now implies the relationship

kxk2 =


x� projy (x)

2 + 

projy (x)

2 :

Using


x� projy (x)

2 � 0 we then obtain the inequality 

projy (x)

 � kxk : �

Two important corollaries follow directly from this result..

Corollary 20. (The Cauchy-Schwarz Inequality)

j(xjy)j � kxk kyk :

Proof. If y = 0 the inequality is trivial. Otherwise use

kxk �


projy (x)



=

���� (xjy)(yjy)

���� kyk
=
j(xjy)j
kyk :

�

Corollary 21. (The Triangle Inequality)

kx+ yk � kxk+ kyk :

Proof. We simply compute

kx+ yk2 = (x+ yjx+ y)
= kxk2 + 2Re (xjy) + kyk2

� kxk2 + 2 j(xjy)j+ kyk2

� kxk2 + 2 kxk kyk+ kyk2

= (kxk+ kyk)2 :

�
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2.1. Exercises.

(1) Show that a hyperplane H = fx 2 V : (ajx) = �g in a real n-dimensional
inner product space V can be represented as an a¢ ne subspace

H = ft1x1 + � � �+ tnxn : t1 + � � �+ tn = 1g ;

where x1; :::; xn 2 H. Find conditions on x1; ::; xn so that they generate
a hyperplane.

(2) Let x = (2; 1) and y = (3; 1) in R2: If z 2 R2 satis�es (zjx) = 1 and
(zjy) = 2; then �nd the coordinates for z:

(3) In Rn assume that we have x1; :::; xk 2 V with kxik > 0; (xijxj) < 0;
i 6= j:
(a) Show that it is possible to have k = n+ 1:
(b) Show that if k � n then x1; :::; xk are linearly independent..

(4) In a real inner product space V select y 6= 0: For �xed � 2 R show that
H =

�
x 2 V : projy (x) = �y

	
describes a hyperplane with normal y:

(5) Let V be an inner product space and let y; z 2 V: Show that y = z if and
only if (xjy) = (xjz) for all x 2 V:

(6) Prove the Cauchy-Schwarz inequality by expanding the right hand side of
the inequality

0 �





x� (xjy)kyk2

y







2

(7) Let V be an inner product space and x1; :::; xn; y1; :::; yn 2 V: Show the
following generalized Cauchy-Schwarz inequality 

nX
i=1

j(xijyi)j
!2
�
 

nX
i=1

kxik2
! 

nX
i=1

kyik2
!

(8) Let Sn�1 = fx 2 Rn : kxk = 1g be the unit sphere. When n = 1 it consists
of two points. When n = 2 it is a circle etc. A �nite subset fx1; :::; xkg 2
Sn�1 is said to consist of equidistant points if ] (xi; xj) = � for all i 6= j:
(a) Show that this is equivalent to assuming that (xijxj) = cos � for all

i 6= j:
(b) Show that S0 contains a set of two equidistant points, S1 a set of

three equidistant points, and S2 a set of four equidistant points.
(c) Using induction on n show that a set of equidistant points in Sn�1

contains no more than n+ 1 elements.
(9) In an inner product space show the parallelogram rule

kx� yk2 + kx+ yk2 = 2 kxk2 + 2 kyk2 :

Here x and y describe the sides in a parallelogram and x + y and x � y
the diagonals.

(10) In a complex inner product space show that

4 (xjy) =
3X

k=0

ik


x+ iky

2 :
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3. Orthonormal Bases

Let us �x an inner product space V: A possibly in�nite collection e1; :::; en; :::
of vectors in V is said to be orthogonal if (eijej) = 0 for i 6= j: If in addition these
vectors are of unit length, i.e., (eijej) = �ij ; then we call the collection orthonormal.

The usual bases for Rn and Cn are evidently orthonormal collections. Since
they are also bases we call them orthonormal bases.

Lemma 18. Let e1; :::; en be orthonormal. Then e1; ::; en are linearly indepen-
dent and any element x 2 span fe1; ::; eng has the expansion

x = (xje1) e1 + � � � (xjen) en:

Proof. Note that if x = �1e1 + � � �+ �nen; then

(xjei) = (�1e1 + � � �+ �nenjei)
= �1 (e1jei) + � � �+ �n (enjei)
= �1�1i + � � �+ �n�ni
= �i:

In case x = 0; this gives us linear independence and in case x 2 span fe1; ::; eng we
have computed the ith coordinate using the inner product. �

This allows us to construct not only an isomorphism to Fn but an isomorphism
that preserves inner products. We say that two inner product spaces V andW over
F are isometric, if we can �nd an isometry L : V ! W; i.e., an isomorphism such
that (L (x) jL (y)) = (xjy) :

Lemma 19. If V admits a basis that is orthonormal, then V is isometric to Fn.

Proof. Choose an orthonormal basis e1; :::; en for V and de�ne the usual iso-
morphism L : Fn ! V by

L

0B@
264 �1

...
�n

375
1CA =

�
e1 � � � en

� 264 �1
...
�n

375
= �1e1 + � � �+ �nen:

Note that by the above Lemma the inverse map that computes the coordinates of
a vector is explicitly given by

L�1 (x) =

264 (xje1)
...

(xjen)

375 :
If we take two vectors x; y and expand them

x = �1e1 + � � �+ �nen;
y = �1e1 + � � �+ �nen;
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then we can compute

(xjy) = (�1e1 + � � �+ �nenjy)
= �1 (e1jy) + � � �+ �n (enjy)
= �1(yje1) + � � �+ �n(yjen)
= �1�1 + � � �+ �n�n

=

0B@
264 �1

...
�n

375
�������
264 �1

...
�n

375
1CA

=
�
L�1 (x) jL�1 (y)

�
:

This proves that L�1 is an isometry. This implies that L is also an isometry. �

We are now left with the nagging possibility that orthonormal bases might be
very special and possibly not exist.

The procedure for constructing orthonormal collections is known as the Gram-
Schmidt procedure. It is not clear who invented the process, but these two people
de�nitely promoted and used it to great e¤ect. Gram was in fact an actuary and
as such was mainly interested in applied statistics.

Given a linearly independent set x1; :::; xm in an inner product space V it is
possible to construct an orthonormal collection e1; :::; em such that

span fx1; :::; xmg = span fe1; :::; emg :
The procedure is actually iterative and creates e1; :::; em in such a way that

span fx1g = span fe1g ;
span fx1; x2g = span fe1; e2g ;

...

span fx1; :::; xmg = span fe1; :::; emg :
This basically forces us to de�ne e1 as

e1 =
1

kx1k
x1:

Then e2 is constructed by considering

z2 = x2 � projx1 (x2)
= x2 � proje1 (x2)
= x2 � (x2je1) e1;

and de�ning

e2 =
1

kz2k
z2:

Having constructed an orthonormal set e1; :::; ek we can then de�ne

zk+1 = xk+1 � (xk+1je1) e1 � � � � � (xk+1jek) ek:
As

span fx1; :::; xkg = span fe1; :::; ekg ;
xk+1 =2 span fx1; :::; xkg
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we have that zk+1 6= 0: Thus we can de�ne

ek+1 =
1

kzk+1k
zk+1:

To see that ek+1 is perpendicular to e1; :::; ek we note that

(ek+1jei) =
1

kzk+1k
(zk+1jei)

=
1

kzk+1k
(xk+1jei)�

1

kzk+1k

0@ kX
j=1

(xk+1jej) ej

������ ei
1A

=
1

kzk+1k
(xk+1jei)�

1

kzk+1k

kX
j=1

(xk+1jej) (ej jei)

=
1

kzk+1k
(xk+1jei)�

1

kzk+1k

kX
j=1

(xk+1jej) �ij

=
1

kzk+1k
(xk+1jei)�

1

kzk+1k
(xk+1jei)

= 0:

Since

span fx1g = span fe1g ;
span fx1; x2g = span fe1; e2g ;

...

span fx1; :::; xmg = span fe1; :::; emg
we have constructed e1; :::; em in such a way that�

e1 � � � em
�
=
�
x1 � � � xm

�
B;

where B is an upper triangular m�m matrix with positive diagonal entries. Con-
versely we have �

x1 � � � xm
�
=
�
e1 � � � em

�
R;

where R = B�1 is also upper triangular with positive diagonal entries. Given that
we have a formula for the expansion of each xk in terms of e1; :::; ek we see that

R =

2666664
(x1je1) (x2je1) (x3je1) � � � (xmje1)
0 (x2je2) (x3je2) � � � (xmje2)
0 0 (x3je3) � � � (xmje3)
...

...
...

. . .
...

0 0 0 � � � (xmjem)

3777775
We often abbreviate

A =
�
x1 � � � xm

�
;

Q =
�
e1 � � � em

�
;

and obtain the QR-factorization A = QR: In case V is Rn or Cn A is a general
n�m matrix of rank m; Q is also an n�m matrix of rank m with the added feature
that its columns are orthonormal, and R is an upper triangularm�m matrix. Note
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that in this interpretation the QR-factorization is an improved Gauss elimination:
A = PU; with P 2 Gln and U upper triangular.

With that in mind it is not surprising that the QR-factorization gives us a way
of inverting the linear map �

x1 � � � xn
�
: Fn ! V

when x1; :::; xn is a basis. First recall that the isometry�
e1 � � � en

�
: Fn ! V

is easily inverted and the inverse can be symbolically represented as

�
e1 � � � en

��1
=

264 (e1j�)
...

(enj�)

375 ;
or more precisely

�
e1 � � � en

��1
(x) =

264 (e1jx)
...

(enjx)

375

=

264 (xje1)
...

(xjen)

375
This is the great feature of orthonormal bases, namely, that one has an explicit
formula for the coordinates in such a basis. Next on the agenda is the invertibility
of R: Given that it is upper triangular this is a reasonably easy problem in the
theory of solving linear systems. However, having found the orthonormal basis
through Gram-Schmidt we have already found this inverse since�

x1 � � � xn
�
=
�
e1 � � � en

�
R

implies that �
e1 � � � en

�
=
�
x1 � � � xn

�
R�1

and the goal of the process was to �nd e1; :::; en as a linear combination of x1; :::; xn:
Thus we obtain the formula�

x1 � � � xn
��1

= R�1
�
e1 � � � en

��1
= R�1

264 (e1j�)
...

(enj�)

375 :
The Gram-Schmidt process, therefore, not only gives us an orthonormal basis but
it also gives us a formula for the coordinates of a vector with respect to the original
basis.

It should also be noted that if we start out with a set x1; :::; xm that is not lin-
early independent, then this will be revealed in the process of constructing e1; :::; em:
What will happen is that either x1 = 0 or there is a smallest k such that xk+1 is a
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linear combination of x1; :::; xk: In the latter case we get to construct e1; :::; ek since
x1; :::; xk were linearly independent. As xk+1 2 span fe1; :::; ekg we must have that

zk+1 = xk+1 � (xk+1je1) e1 � � � � � (xk+1jek) ek = 0
since the way in which xk+1 is expanded in terms of e1; :::; ek is given by

xk+1 = (xk+1je1) e1 + � � �+ (xk+1jek) ek:
Thus we fail to construct the unit vector ek+1:

With all this behind us we have proved the important result.

Theorem 27. (Uniqueness of Inner Product Spaces) An n-dimensional inner
product space over R, respectively C; is isometric to Rn, respectively Cn:

The operator norm, for a linear operator L : V ! W between inner product
spaces is de�ned so that

kL (x)k � kLk kxk :
Using the scaling properties of the norm and linearity of L this is the same as saying



L� x

kxk

�



 � kLk ; for x 6= 0:
Since




 x
kxk




 = 1; we can de�ne the operator norm by

kLk = sup
kxk=1

kL (x)k :

This operator norm is �nite provided V is �nite dimensional.

Theorem 28. Let L : V ! W be a linear map. If V is a �nite dimensional
inner product space, then

kLk = sup
kxk=1

kL (x)k <1:

Proof. Start by selecting an orthonormal basis e1; :::; en for V: Then observe
that

kL (x)k =






L
 

nX
i=1

(xjei) ei

!





=







nX
i=1

(xjei)L (ei)







�
nX
i=1

j(xjei)j kL (ei)k

�
nX
i=1

kxk kL (ei)k

=

 
nX
i=1

kL (ei)k
!
kxk :

Thus

kLk �
nX
i=1

kL (ei)k :

�
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To �nish the section let us try to do a few concrete examples.

Example 68. Consider the vectors x1 = (1; 1; 0) ; x2 = (1; 0; 1) ; and x3 =
(0; 1; 1; ) in R3: If we perform Gram-Schmidt then the QR factorization is24 1 1 0

1 0 1
0 1 1

35 =
264

1p
2

1p
6
� 1p

3
1p
2
� 1p

6
1p
3

0 2p
6

1p
3

375
264
p
2 1p

2
1p
2

0 3p
6

1p
6

0 0 2p
3

375
Example 69. The Legendre polynomials of degrees 0, 1, and 2 on [�1; 1] are

by de�nition the polynomials obtained via Gram-Schmidt from 1; t; t2 with respect
to the inner product

(f jg) =
Z 1

�1
f (t) g (t)dt:

We see that jj1jj =
p
2 so the �rst polynomial is

p0 (t) =
1p
2
:

To �nd p1 (t) we �rst �nd

z1 = t� (tjp0) p0

= t�
�Z 1

�1
t
1p
2
dt

�
1p
2

= t:

Then

p1 (t) =
t

ktk =
r
3

2
t:

Finally for p2 we �nd

z2 = t2 �
�
t2jp0

�
p0 �

�
t2jp1

�
p1

= t2 �
�Z 1

�1
t2
1p
2
dt

�
1p
2
�
 Z 1

�1
t2
r
3

2
tdt

!r
3

2
t

= t2 � 1
3
:

Thus

p2 (t) =
t2 � 1

3

t2 � 1
3




=

r
45

8

�
t2 � 1

3

�
:

Example 70. A system of real equations Ax = b can be interpreted geometri-
cally as n equations

(a1jx) = �1;

...

(anjx) = �n;

where ak is the kth row in A and �k the k
th coordinate for b: The solutions will be

the intersection of the n hyperplanes Hk = fz : (akjz) = �kg :
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Example 71. We wish to show that the trigonometric functions

1 = cos (0 � t) ; cos (t) ; cos (2t) ; :::; sin (t) ; sin (2t) ; :::

are orthogonal in C12� (R;R) with respect to the inner product

(f jg) = 1

2�

Z �

��
f (t) g (t) dt:

First observe that cos (mt) sin (nt) is an odd function. This proves that

(cos (mt) j sin (nt)) = 0:

Thus we are reduced to showing that each of the two sequences

1; cos (t) ; cos (2t) ; ::

sin (t) ; sin (2t) ; :::

are orthogonal. Using integration by parts we see

(cos (mt) j cos (nt))

=
1

2�

Z �

��
cos (mt) cos (nt) dt

=
1

2�

sin (mt)

m
cos (nt)

�����
��
� 1

2�

Z �

��

sin (mt)

m
(�n) sin (nt) dt

=
n

m

1

2�

Z �

��
sin (mt) sin (nt) dt

=
n

m
(sin (mt) j sin (nt))

=
n

m

1

2�

� cos (mt)
m

sin (nt)

�����
��
� n

m

1

2�

Z �

��

� cos (mt)
m

n cos (nt) dt

=
� n
m

�2 1
2�

Z �

��
cos (mt) cos (nt) dt

=
� n
m

�2
(cos (mt) j cos (nt)) :

When n 6= m and m > 0 this clearly proves that (cos (mt) j cos (nt)) = 0 and in
addition that (sin (mt) j sin (nt)) = 0: Finally let us compute the norm of these
functions. Clearly k1k = 1. We just proved that kcos (mt)k = ksin (mt)k. This
combined with the fact that

sin2 (mt) + cos2 (mt) = 1

shows that

kcos (mt)k = ksin (mt)k = 1p
2

Example 72. Let us try to do Gram-Schmidt on 1; cos t; cos2 t using the above
inner product. We already know that the �rst two functions are orthogonal so

e1 = 1;

e2 =
p
2 cos (t) :
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z2 = cos2 (t)�
�
cos2 (t) j1

�
1�

�
cos2 (t) j

p
2 cos (t)

�p
2 cos (t)

= cos2 (t)� 1

2�

�Z �

��
cos2 (t) dt

�
� 2

2�

�Z �

��
cos2 (t) cos (t) dt

�
cos t

= cos2 (t)� 1
2
� 1
�

�Z �

��
cos3 (t) dt

�
cos t

= cos2 (t)� 1
2

Thus the third function is

e3 =
cos2 (t)� 1

2

cos2 (t)� 1
2




= 2

p
2 cos2 (t)�

p
2:

3.1. Exercises.

(1) Use Gram-Schmidt on the vectors

�
x1 x2 x3 x4 x5

�
=

266664
p
5 �2 4 e 3

0 8 � 2 �10
0 0 1 +

p
2 3 �4

0 0 0 �2 6
0 0 0 0 1

377775
to obtain an orthonormal basis for F5:

(2) Find an orthonormal basis for R3 where the �rst vector is proportional to
(1; 1; 1) :

(3) Use Gram-Schmidt on the collection x1 = (1; 0; 1; 0) ; x2 = (1; 1; 1; 0) ;
x3 = (0; 1; 0; 0) :

(4) Use Gram-Schmidt on the collection x1 = (1; 0; 1; 0) ; x2 = (0; 1; 1; 0) ;
x3 = (0; 1; 0; 1) and complete to an orthonormal basis for R4:

(5) Use Gram-Schmidt on sin t; sin2 t; sin3 t:
(6) Given an arbitrary collection of vectors x1; :::; xm in an inner product

space V; show that it is possible to �nd orthogonal vectors z1; :::; zn 2 V
such that �

x1 � � � xm
�
=
�
z1 � � � zn

�
Aref ;

where Aref is an n�m matrix in row echelon form. Explain how this can
be used to solve systems of the form

�
x1 � � � xm

� 264 �1
...
�m

375 = b:

(7) The goal of this exercise is to construct a dual basis to a basis x1; :::; xn for
an inner product space V: We call x�1; :::; x

�
n a dual basis if

�
xijx�j

�
= �ij :

(a) Show that if x�1; :::; x
�
n exist then it is a basis for V:
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(b) Show that if x1; :::; xn is a basis, then we have an isomorphism L :
V ! Fn de�ned by

L (x) =

264 (xjx1)
...

(xjxn)

375 :
(c) Show that each basis has a unique dual basis (you have to show it

exists and that there is only one such basis).
(d) Show that a basis is orthonormal if and only if it is self-dual, i.e., it

is its own dual basis.
(e) Given (1; 1; 0) ; (1; 0; 1) ; (0; 1; 1) 2 R3 �nd the dual basis.
(f) Find the dual basis for 1; t; t2 2 P2 with respect to the inner product

(f jg) =
Z 1

�1
f (t) g (t) dt

(8) Using the inner product

(f jg) =
Z 1

0

f (t) g (t) dt

on R [t] and Gram-Schmidt on 1; t; t2 �nd an orthonormal basis for P2:
(9) (Legendre Polynomials) Consider the inner product

(f jg) =
Z b

a

f (t) g (t) dt

on R [t] and de�ne

q2n (t) = (t� a)n (t� b)n ;

pn (t) =
dn

dtn
(q2n (t)) :

(a) Show that

q2n (a) = q2n (b) = 0;

...
dn�1q2n
dtn�1

(a) =
dn�1q2n
dtn�1

(b) = 0:

(b) Show that pn has degree n:
(c) Use induction on n to show that pn (t) is perpendicular to 1; t; :::; tn�1:

Hint: Use integration by parts.
(d) Show that p0; p1; :::::; pn; :::: are orthogonal to each other.

(10) (Lagrange Interpolation) Select n + 1 distinct points t0; :::; tn 2 C and
consider

(p (t) jq (t)) =
nX
i=0

p (ti) q (ti):

(a) Show that this de�nes an inner product on Pn but not on C [t] :
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(b) Consider

p0 (t) =
(t� t1) (t� t2) � � � (t� tn�1)
(t0 � t1) (t0 � t2) � � � (t0 � tn�1)

;

p1 (t) =
(t� t0) (t� t2) � � � (t� tn�1)
(t1 � t0) (t1 � t2) � � � (t1 � tn�1)

;

...

pn�1 (t) =
(t� t0) (t� t1) � � � (t� tn�2)

(tn�1 � t0) (tn�1 � t1) � � � (tn�1 � tn�2)
:

Show that pi (tj) = �ij and that p0; :::; pn form an orthonormal basis
for Pn:

(c) Use p0; :::; pn to solve the problem of �nding a polynomial p 2 Pn
such that p (ti) = bi:

(d) Let �1; :::; �n 2 C (they may not be distinct) and f : C! C a
function. Show that there is a polynomial p (t) 2 C [t] such that
p (�1) = f (�1) ; :::; p (�n) = f (�n) :

(11) (P. En�o) Let V be a �nite dimensional inner product space and x1; :::;
xn; y1; :::; yn 2 V:Show En�o�s inequality0@ nX

i;j=1

j(xijyj)j2
1A2

�

0@ nX
i;j=1

j(xijxj)j2
1A0@ nX

i;j=1

j(yijyj)j2
1A :

Hint: Use an orthonormal basis and start expanding on the left hand side.
(12) Let L : V ! V be an operator on a �nite dimensional inner product space.

(a) If � is an eigenvalue for L; then

j�j � kLk :

(b) Given examples of 2�2 matrices where strict inequality always holds.
(13) Let L : V1 ! V2 and K : V2 ! V3 be linear maps between �nite dimen-

sional inner product spaces. Show that

jjK � Ljj � jjKjj jjLjj :

(14) Let L;K : V ! V be operators on a �nite dimensional inner product
space. If K is invertible show that

jjLjj =
����K � L �K�1���� :

(15) Let L;K : V !W be lienar maps between �nite dimensional inner prod-
uct spaces. Show that

jjL+Kjj � jjLjj+ jjKjj :

(16) Let A 2 Matn�m (F) : Show that

j�ij j � jjAjj ;

where jjAjj is the operator norm of the linear map A : Fm ! Fn: Give
examples where

jjAjj 6=
p
tr (AA�) =

p
(AjA):
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4. Orthogonal Complements and Projections

The goal of this section is to �gure out if there is a best possible projection onto
a subspace of a vector space. In general there are quite a lot of projections, but
if we have an inner product on the vector space we can imagine that there should
be a projection where the image of a vector is as close as possible to the original
vector.

Let M � V be a �nite dimensional subspace of an inner product space. From
the previous section we know that it is possible to �nd an orthonormal basis
e1; :::; em for M: Using that basis we de�ne E : V ! V by

E (x) = (xje1) e1 + � � �+ (xjem) em:

Note that E (z) 2 M for all z 2 V: Moreover, if x 2 M; then E (x) = x: Thus
E2 (z) = E (z) for all z 2 V . This shows that E is a projection whose image is M:
Next let us identify the kernel. If x 2 ker (E) ; then

0 = E (x)

= (xje1) e1 + � � �+ (xjem) em:

Since e1; :::; em is a basis this means that (xje1) = � � � = (xjem) = 0: This in turn is
equivalent to the condition

(xjz) = 0 for all z 2M;

since any z 2M is a linear combination of e1; :::; em: The set of all such vectors is
denoted

M? = fx 2 V : (xjz) = 0 for all z 2Mg

and is called the orthogonal complement to M in V: Given that ker (E) = M? we
have a formula for the kernel that does not depend on E: Thus E is simply the
projection of V onto M along M?: The only problem with this characterization
is that we don�t know from the outset that V = M � M?: In case M is �nite
dimensional, however, the existence of the projection E insures us that this must
be the case as

x = E (x) + (1V � E) (x)

and (1V � E) (x) 2 ker (E) = M?. In case we have an orthogonal direct sum de-
composition: V =M�M? we call the projection ontoM alongM? the orthogonal
projection onto M and denote it by projM : V ! V .

The vector projM (x) also solves our problem of �nding the vector in M that
is closest to x: To see why this is true, choose z 2 M and consider the triangle
that has the three vectors x; projM (x) ; and z as vertices. The sides are given by
x�projM (x) ; projM (x)�z; and z�x: Since projM (x)�z 2M and x�projM (x) 2
M? these two vectors are perpendicular and hence we have

kx� projM (x)k
2 �

kx� projM (x)k
2
+ kprojM (x)� zk

2
= kx� zk2 ;

where equality holds only when kprojM (x)� zk
2
= 0; i.e., projM (x) is the one and

only point closest to x among all points in M:
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Let us collect the above information in a theorem.

Theorem 29. (Orthogonal Sum Decomposition) Let V be an inner product
space and M � V a �nite dimensional subspace. Then V = M �M? and for any
orthonormal basis e1; :::; em for M; the projection onto M along M? is given by:

projM (x) = (xje1) e1 + � � �+ (xjem) em:

Corollary 22. If V is �nite dimensional and M � V is a subspace, then

V = M �M?;�
M?�? = M?? =M;

dimV = dimM + dimM?:

Orthogonal projections can also be characterized as follows.

Theorem 30. (Characterization of Orthogonal Projections) Assume that V is
a �nite dimensional inner product space and E : V ! V a projection on to M � V .
Then the following conditions are equivalent.

(1) E = projM :

(2) im (E)? = ker (E) :
(3) kE (x)k � kxk for all x 2 V:

Proof. We have already seen that 1 and 2 are equivalent. These conditions
imply 3 as x = E (x) + (1� E) (x) is an orthogonal decomposition. So

kxk2 = kE (x)k2 + k(1� E) (x)k2

� kE (x)k2 :

It remains to be seen that 3 implies that E is orthogonal. To prove this choose
x 2 ker (E)? and observe that E (x) = x � (1V � E) (x) is an orthogonal decom-
position since (1V � E) (z) 2 ker (E) for all z 2 V: Thus

kxk2 � kE (x)k2

= kx� (1� E) (x)k2

= kxk2 + k(1� E) (x)k2

� kxk2

This means that (1V � E) (x) = 0 and hence x = E (x) 2 im (E) : Thus ker (E)? �
im (E) : We also know from the Dimension Formula that

dim (im (E)) = dim (V )� dim (ker (E))

= dim
�
ker (E)

?
�
:

This shows that ker (E)? = im (E) : �
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Example 73. Let V = Rn and M = span f(1; :::; 1)g : Since k(1; :::; 1)k2 = n;
we see that

projM (x) = projM

0B@
264 �1

...
�1

375
1CA

=
1

n

0B@
264 �1

...
�1

375
�������
264 1
...
1

375
1CA
264 1
...
1

375
=

�1 + � � �+ �n
n

264 1
...
1

375
= ��

264 1
...
1

375 ;
where �� is the average or mean of the values �1; :::; �n: Since projM (x) is the clos-
est element in M to x we get a geometric interpretation of the average of �1; :::; �n.
If in addition we use that projM (x) and x� projM (x) are perpendicular we arrive
at a nice formula for the variance:

kx� projM (x)k
2
=

nX
i=1

j�i � ��j2

= kxk2 � kprojM (x)k
2

=
nX
i=1

j�ij2 �
nX
i=1

j��j2

=

 
nX
i=1

j�ij2
!
� n j��j2

=

 
nX
i=1

j�ij2
!
� (
Pn

i=1 �i)
2

n

As above letM � V be a �nite dimensional subspace of an inner product space
and e1; :::; em an orthonormal basis for M: Using the formula

projM (x) = (xje1) e1 + � � �+ (xjem) em
= �1e1 + � � �+ �nem;

we see that the inequality kprojM (x)k � kxk translates into the Bessel inequality

j�1j2 + � � �+ j�nj2 � kxk2 :

This follows by observing that the map
�
e1 � � � em

�
: Fm !M is an isometry

and therefore

kxk2 � kprojM (x)k
2

= j�1j2 + � � �+ j�nj2 :
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Note that whenm = 1 this was the inequality used to establish the Cauchy-Schwarz
inequality.

4.1. Exercises.
(1) Consider Matn�n (C) with the inner product (AjB) = tr (AB�) : Describe

the orthogonal complement to the space of all diagonal matrices.
(2) If M = span fz1; :::; zmg ; then

M? = fx 2 V : (xjz1) = � � � = (xjzm) = 0g
(3) Assume V =M �M?; show that

x = projM (x) + projM? (x)

(4) Find the element in span f1; cos t; sin tg that is closest to sin2 t:
(5) Assume V = M �M? and that L : V ! V is a linear operator. Show

that bothM andM? are L invariant if and only if projM �L = L�projM :
(6) Let A 2 Matm�n (R) :

(a) Show that the row vectors of A are in the orthogonal complement of
ker (A) :

(b) Use this to show that the row rank and column rank of A are the
same.

(7) Let M;N � V be subspaces of a �nite dimensional inner product space.
Show that

(M +N)
?

= M? \N?;

(M \N)? = M? +N?:

(8) Find the orthogonal projection onto span f(2;�1; 1) ; (1;�1; 0)g by �rst
computing the orthogonal projection onto the orthogonal complement.

(9) Find the polynomial p (t) 2 P2 such thatZ 2�

0

jp (t)� cos tj2 dt

is smallest possible.
(10) Show that the decomposition into even and odd functions on C0 ([�a; a] ;C)

is orthogonal if we use the inner product

(f jg) =
Z a

�a
f (t) g (t)dt:

(11) Find the orthogonal projection from C [t] onto span f1; tg = P1: Given
any p 2 C [t] you should express the orthogonal projection in terms of the
coe¢ cients of p:

(12) Find the orthogonal projection from C [t] onto span
�
1; t; t2

	
= P2:

(13) Compute the orthogonal projection onto the following subspaces:

(a) span

8>><>>:
2664
1
1
1
1

3775
9>>=>>;

(b) span

8>><>>:
2664

1
�1
0
1

3775 ;
2664
1
1
1
0

3775 ;
2664
2
0
1
1

3775
9>>=>>;
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(c) span

8>><>>:
2664
1
i
0
0

3775 ;
2664
�i
1
0
0

3775 ;
2664
0
1
i
0

3775
9>>=>>;

(14) (Selberg) Let x; y1; :::; yn 2 V; where V is an inner product space. Show
Selberg�s �generalization�of Bessel�s inequality

nX
i=1

j(xjyi)j2 � kxk2
nX

i;j=1

j(yijyj)j

5. Adjoint Maps

To introduce the concept of adjoints of linear maps we start with the construc-
tion for matrices, i.e., linear maps A : Fm ! Fn; where F = R or C and Fm;Fn
are equipped with their standard inner products. We can write A as an n � m
matrix and we de�ne the adjoint A� = �At; i.e., A� is the transposed and conjugate
of A: In case F = R; conjugation is irrelevant so A� = At: Note that since A� is an
m � n matrix it corresponds to a linear map A� : Fn ! Fm: The adjoint satis�es
the crucial property

(Axjy) = (xjA�y) :
To see this we simply think of x as an m� 1 matrix, y as an n� 1 matrix and then
observe that

(Axjy) = (Ax)
t
�y

= xtAt�y

= xt
�
�Aty
�

= (xjA�y) :

In the general case of a linear map L : V !W we can try to de�ne the adjoint
through matrix representations. To this end select orthonormal bases for V and W
so that we have a diagram

V
L�! W

l l
Fm [L]�! Fn

where the vertical double-arrows are isometries. Then de�ne L� : W ! V as the
linear map whose matrix representation is [L]� : In other words [L�] = [L]� and the
following diagram commutes

V
L� � W

l l
Fm [L]� � Fn

Because the vertical arrows are isometries we also have

(Lxjy) = (xjL�y) :

There is a similar construction of L� that uses only a basis for e1; :::; em for V:
To de�ne L� (y) we need to know the inner products (L�yjej). The relationship
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(Lxjy) = (xjL�y) indicates that (L�yjej) can be calculated as

(L�yjej) = (ej jL�y)
= (Lej jy)
= (yjLej) :

So let us de�ne

L�y =
mX
j=1

(yjLej) ej :

This clearly de�nes a linear map L� :W ! V satisfying

(Lej jy) = (ej jL�y) :

The more general condition

(Lxjy) = (xjL�y)

follows immediately by writing x as a linear combination of e1; :::; em and using
linearity in x on both sides of the equation.

Next we address the issue of whether the adjoint is uniquely de�ned, i.e., could
there be two linear maps Ki :W ! V; i = 1; 2 such that

(xjK1y) = (Lxjy) = (xjK2y)?

This would imply

0 = (xjK1y)� (xjK2y)

= (xjK1y �K2y) :

If x = K1y �K2y; then

jjK1y �K2yjj2 = 0

and hence K1y = K2y:
The adjoint has the following useful elementary properties.

Proposition 21. Let L;K : V !W and L1 : V1 ! V2; L2 : V2 ! V3; then

(1) (L+K)� = L� +K�:
(2) L�� = L
(3) (�1V )

�
= ��1V :

(4) (L2L1)
�
= L�1L

�
2:

(5) If L is invertible, then
�
L�1

��
= (L�)

�1
:

Proof. The key observation for the proofs of these properties is that any L0 :
W ! V with the property that (Lxjy) = (xjL0y) for all x must satisfy L0y = L�y:

To check the �rst property we calculate�
xj (L+K)� y

�
= ((L+K)xjy)
= (Lxjy) + (Kxjy)
= (xjL�y) + (xjK�y)

= (xj (L� +K�) y) :
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The second is immediate from

(Lxjy) = (xjL�y)
= (L�yjx)
= (yjL��x)
= (L��xjy) :

The third property follows from

(�1V (x) jy) = (�xjy)
=

�
xj��y

�
=

�
xj��1V (y)

�
:

The fourth property �
xj (L2L1)� y

�
= ((L2L1) (x) jz)
= (L2 (L1 (x)) jz)
= (L1 (x) jL�2 (z))
= (xjL�1 (L�2 (z)))
= (xj (L�1L�2) (z)) :

And �nally 1V = L�1L implies that

1V = (1V )
�

=
�
L�1L

��
= L�

�
L�1

��
as desired. �

Example 74. As an example let us �nd the adjoint to�
e1 � � � en

�
: Fn ! V;

when e1; :::; en is an orthonormal basis. Recall that we have already found a simple
formula for the inverse

�
e1 � � � en

��1
(x) =

264 (xje1)
...

(xjen)

375
and we proved that

�
e1 � � � en

�
preserves inner products. If we let x 2 Fn and

y 2 V; then we can write y =
�
e1 � � � en

�
(z) for some z 2 Fn: With that in

mind we can calculate��
e1 � � � en

�
(x) jy

�
=

��
e1 � � � en

�
(x) j

�
e1 � � � en

�
(z)
�

= (xjz)

=
�
xj
�
e1 � � � en

��1
(y)
�
:

Thus we have �
e1 � � � en

��
=
�
e1 � � � en

��1
:

Below we shall generalize this relationship to all isomorphisms that preserve inner
products.
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This relationship simpli�es the job of calculating matrix representations with
respect to orthonormal bases. Assume that L : V !W is a linear map between �-
nite dimensional inner product spaces and that we have orthonormal bases e1; :::; em
for V and f1; :::; fn for W: Then

L =
�
f1 � � � fn

�
[L]
�
e1 � � � em

��
;

[L] =
�
e1 � � � em

�
L
�
f1 � � � fn

��
:

or in diagram form

V
L�! W�

e1 � � � em
�� # �

f1 � � � fn
�
"

Fm [L]�! Fn

V
L�! W�

e1 � � � em
�
"

�
f1 � � � fn

�� #
Fm [L]�! Fn

From this we see that the matrix de�nition of the adjoint is justi�ed since the
properties of the adjoint now tell us that:

L� =
��

f1 � � � fn
�
[L]
�
e1 � � � em

����
=

�
e1 � � � em

�
[L]

� � f1 � � � fn
��
:

A linear map and its adjoint have some remarkable relationships between their
images and kernels. These properties are called the Fredholm alternatives and
named after Fredholm who �rst used these properties to clarify when certain linear
systems L (x) = b can be solved.

Theorem 31. (The Fredholm Alternative) Let L : V ! W be a linear map
between �nite dimensional inner product spaces. Then

ker (L) = im (L�)
?
;

ker (L�) = im (L)
?
;

ker (L)
?

= im (L�) ;

ker (L�)
?

= im (L) :

Proof. Since L�� = L and M?? = M we see that all of the four statements
are equivalent to each other. Thus we need only prove the �rst. The two subspaces
are characterized by

ker (L) = fx 2 V : Lx = 0g ;
im (L�)

?
= fx 2 V : (xjL�z) = 0 for all z 2Wg :

Now �x x 2 V and use that (Lxjz) = (xjL�z) for all z 2 V: This implies �rst that
if x 2 ker (L) ; then also x 2 im (L�)? : Conversely, if 0 = (xjL�z) = (Lxjz) for all
z 2W it must follow that Lx = 0 and hence x 2 ker (L) : �

Corollary 23. (The Rank Theorem) Let L : V !W be a linear map between
�nite dimensional inner product spaces. Then

rank (L) = rank (L�) :
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Proof. Using The Dimension formula for linear maps and that orthogonal
complements have complementary dimension together with the Fredholm alterna-
tive we see

dimV = dim (ker (L)) + dim (im (L))

= dim (im (L�))
?
+ dim (im (L))

= dimV � dim (im (L�)) + dim (im (L)) :

This implies the result. �

Corollary 24. For a real or complex n�m matrix A the column rank equals
the row rank.

Proof. First note that rank (B) = rank
�
�B
�
for all complex matrices B. Sec-

ondly, we know that rank (A) is the same as the column rank. Thus rank (A�) is
the row rank of �A: This proves the result. �

Corollary 25. Let L : V ! V be a linear operator on a �nite dimensional
inner product space. Then � is an eigenvalue for L if and only if �� is an eigenvalue
for L�: Moreover these eigenvalue pairs have the same geometric multiplicity:

dim (ker (L� �1V )) = dim
�
ker
�
L� � ��1V

��
:

Proof. Note that (L� �1V )� = L� � ��1V . Thus the result follows if we can
show

dim (ker (K)) = dim (ker (K�))

for K : V ! V: This comes from

dim (ker (K)) = dimV � dim (im (K))
= dimV � dim (im (K�))

= dim (ker (K�)) :

�

5.1. Exercises.
(1) Let V and W be �nite dimensional inner product spaces.

(a) Show that we can de�ne an inner product on homF (V;W ) by (LjK) =
tr (LK�) = tr (K�L) :

(b) Show that (KjL) = (L�jK�) :
(c) If e1; :::; em is an orthonormal basis for V show that

(KjL) = (K (e1) jL (e1)) + � � �+ (K (em) jL (em)) :

(2) Assume that V is a complex inner product space. Recall from the exercises
to �Vector Spaces�in chapter 1 that we have a vector space V � with the
same addition as in V but scalar multiplication is altered by conjugating
the scalar. Show that the map F : V � ! hom (V;C) de�ned by F (x) =
(�jx) is complex linear and an isomorphism when V is �nite dimensional.
Use this to give another de�nition of the adjoint. Here

f = (�jx) 2 hom (V;C)

is the linear map such that f (z) = (zjx) :
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(3) OnMatn�n (C) use the inner product (AjB) = tr (AB�) : ForA 2 Matn�n (C)
consider the two linear operators onMatn�n (C) de�ned by LA (X) = AX;
RA (X) = XA: Show that (LA)

�
= LA� and (RA)

�
= RA� :

(4) Let x1; :::; xk 2 V; where V is a �nite dimensional inner product space.
(a) Show that

G (x1; :::; xk) =
�
x1 � � � xk

�� �
x1 � � � xk

�
where G (x1; :::; xk) is a k � k matrix whose ij entry is (xj jxi) : It is
called the Gram matrix or Grammian.

(b) Show that G = G (x1; :::; xk) is positive de�nite in the sense that
(Gxjx) � 0 for all x 2 Fk:

(5) Find image and kernel for A 2 Mat3�3 (R) where the ij entry is �ij =
(�1)i+j :

(6) Find image and kernel for A 2 Mat3�3 (C) where the kl entry is �kl =
(i)

k+l
:

(7) Let A 2 Matn�n (R) be symmetric, i.e., A� = A; and assume A has rank
k � n:
(a) If the �rst k columns are linearly independent then the principal k�k

minor of A is invertible. The principal k � k minor of A is the k � k
matrix one obtains by deleting the last n�k columns and rows. Hint:
use a block decomposition

A =

�
B C
Ct D

�
and write�

C
D

�
=

�
B
Ct

�
X; X 2 Matk�(n�k) (R)

i.e., the last n� k columns are linear combinations of the �rst k:
(b) If rows i1; :::; ik are linearly independent, then the k � k minor ob-

tained by deleting all columns and rows not indexed by i1; :::; ik is
invertible. Hint: Note that IklAIkl is symmetric so one can use part
a.

(c) Give examples showing that a. need not hold for n � n matrices in
general.

(8) Let L : V ! V be a linear operator on a �nite dimensional inner product
space.
(a) If M � V is an L invariant subspace, then M? is L� invariant.
(b) If M � V is an L invariant subspace, then

(LjM )� = projM �L�jM :

(c) Give an example where M is not L� invariant.
(9) Let L : V ! W be a linear operator between �nite dimensional vector

spaces. Show that
(a) L is one-to-one if and only if L� is onto.
(b) L� is one-to-one if and only if L is onto.

(10) Let M;N � V be subspaces of a �nite dimensional inner product space
and consider L :M �N ! V de�ned by L (x; y) = x� y:
(a) Show that L� (z) = (projM (z) ;�projN (z)) :
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(b) Show that

ker (L�) = M? \N?;

im (L) = M +N:

(c) Using the Fredholm alternative show that

(M +N)
?
=M? \N?:

(d) Replace M and N by M? and N? and conclude

(M \N)? =M? +N?:

(11) Assume that L : V !W is a linear map between inner product spaces.
(a) Show that

dim (ker (L))� dim (im (L))? = dimV � dimW:
(b) If V = W = `2 (Z) then for each integer n 2 Z it is possible to �nd

a linear operator Ln with �nite dimensional ker (Ln) and (im (Ln))
?

so that

Ind (L) = dim (ker (L))� dim (im (L))? = n:

Hint: Consider linear maps that take (ak) to (ak+l) for some l 2 Z:
An operator with �nite dimensional ker (L) and (im (L))? is called a
Fredholm operator. The integer Ind (L) = dim (ker (L))�dim (im (L))?
is the index of the operator and is an important invariant in func-
tional analysis.

(12) Let L : V ! V be an operator on a �nite dimensional inner product space.
Show that

tr (L) = tr (L�) :

(13) Let L : V !W be a linear map between inner product spaces. Show that

L : ker (L�L� �1V )! ker (LL� � �1V )
and

L� : ker (LL� � �1V )! ker (L�L� �1V ) :
(14) Let L : V ! V be a linear operator on a �nite dimensional inner prod-

uct space. If L (x) = �x, L� (y) = �y; and � 6= ��; then x and y are
perpendicular.

(15) Let V be a subspace of C0 ([0; 1] ;R) and consider the linear functionals
ft0 (x) = x (t0) and

fy (x) =

Z 1

0

x (t) y (t) dt:

(a) If V is �nite dimensional show that ft0 jV = fyjV for some y 2 V:
(b) If V = P2 = polynomials of degree � 2; then �nd an explicit y 2 V

as in part a.
(c) If V = C0 ([0; 1] ;R) ; show that it is not possible to �nd y 2 C0 ([0; 1] ;R)

such that ft0 = fy: The illusory function �t0 invented by Dirac to
solve this problem is called Dirac�s �-function. It is de�ned as

�t0 (t) =

�
0 if t 6= t0
1 if t = t0



188 3. INNER PRODUCT SPACES

so as to give the impression thatZ 1

0

x (t) �t0 (t) dt = x (t0) :

(16) Find q (t) 2 P2 such that

p (5) = (pjq) =
Z 1

0

p (t) q (t)dt

for all p 2 P2:
(17) Find f (t) 2 span f1; sin (t) ; cos (t)g such that

(gjf) =
1

2�

Z 2�

0

g (t) f (t)dt

=
1

2�

Z 2�

0

g (t)
�
1 + t2

�
dt

for all g 2 span f1; sin (t) ; cos (t)g :

6. Orthogonal Projections Revisited�

In this section we shall give a new formula for an orthogonal projection. Instead
of using Gram-Schmidt to create an orthonormal basis for the subspace it gives a
direct formula using an arbitrary basis for the subspace.

First we need a new characterization of orthogonal projections using adjoints.

Lemma 20. (Characterization of Orthogonal Projections) A projection E :
V ! V is orthogonal if and only if E = E�.

Proof. The Fredholm alternative tells us that im (E) = ker (E�)? so if E =

E� we have shown that im (E) = ker (E)? ; which implies that E is orthogonal.
Conversely we can assume that im (E) = ker (E)

? since E is an orthogonal
projection. Using the Fredholm alternative again then tells us that

im (E) = ker (E)
?
= im (E�) ;

ker (E�)
?

= im (E) = ker (E)
?
:

As (E�)2 =
�
E2
��
= E� it follows that E� is a projection with the same image and

kernel as E. Hence E = E�: �
Using this characterization of orthogonal projections it is possible �nd a formula

for projM using a general basis for M � V . Let M � V be �nite dimensional with
a basis x1; :::; xm: This yields an isomorphism�

x1 � � � xm
�
: Fm !M

which can also be thought of as a one-to-one map A : Fm ! V whose image is M:
This yields a linear map

A�A : Fm ! Fm:
Since

(A�Ayjy) = (AyjAy)
= kAyk2

the kernel satis�es
ker (A�A) = ker (A) = f0g :
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In particular, A�A is an isomorphism. This means that

E = A (A�A)
�1
A�:

de�nes linear operator E : V ! V . It is easy to check that E = E� and since

E2 = A (A�A)
�1
A�A (A�A)

�1
A�

= A (A�A)
�1
A�

= E;

it is a projection. Finally we must check that im (E) = M: Since (A�A)�1 is an
isomorphism and

im (A�) = (ker (A))
?
= (f0g)? = Fm;

we have

im (E) = im (A) =M

as desired.
To better understand this construction we note that

A� (x) =

264 (xjx1)
...

(xjxm)

375 :
This follows from0B@

264 �1
...
�m

375
�������
264 (xjx1)

...
(xjxm)

375
1CA = �1(xjx1) + � � �+ �m(xjxm)

= �1 (x1jx) + � � �+ �m (xmjx)
= (�1x1 + � � �+ �mxmjx)

=

0B@A
0B@
264 �1

...
�m

375
1CA
�������x
1CA

The matrix form of A�A can now be calculated

A�A = A� �
�
x1 � � � xm

�
=

�
A� (x1) � � � A� (xm)

�
=

264 (x1jx1) � � � (xmjx1)
...

. . .
...

(x1jxm) � � � (xmjxm)

375 :
This is also called the Gram matrix of x1; :::; xm: This information speci�es explic-
itly all of the components of the formula

E = A (A�A)
�1
A�:

The only hard calculation is the inversion of A�A: The calculation of A (A�A)�1A�

should also be compared to using the Gram-Schmidt procedure for �nding the
orthogonal projection onto M:
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6.1. Exercises.
(1) Using the inner product

R 1
0
p (t) �q (t) dt �nd the orthogonal projection from

C [t] onto span f1; tg = P1: Given any p 2 C [t] you should express the
orthogonal projection in terms of the coe¢ cients of p:

(2) Using the inner product
R 1
0
p (t) �q (t) dt �nd the orthogonal projection from

C [t] onto span
�
1; t; t2

	
= P2:

(3) Compute the orthogonal projection onto the following subspaces:

(a) span

8>><>>:
2664
1
1
1
1

3775
9>>=>>;

(b) span

8>><>>:
2664

1
�1
0
1

3775 ;
2664
1
1
1
0

3775 ;
2664
2
0
1
1

3775
9>>=>>;

(c) span

8>><>>:
2664
1
i
0
0

3775 ;
2664
�i
1
0
0

3775 ;
2664
0
1
i
0

3775
9>>=>>;

(4) Given an orthonormal basis e1; :::; ek for the subspace M � V; show that
the orthorgonal projection onto M can be computed as

projM =
�
e1 � � � ek

� �
e1 � � � ek

��
:

Hint: Show that�
e1 � � � ek

�� �
e1 � � � ek

�
= 1Fk :

7. Matrix Exponentials�

In this section we shall show that the initial value problem: _x = Ax; x (t0) = x0
where A is a square matrix with complex (or real) scalars as entries can be solved
using matrix exponentials. Recall that more algebraic approaches are also available
by using the Frobenius canonical form, the Jordan canonical form, and later in
chapter 4 in �Triagulability� Schur�s theorem will give us a very e¤ectiveway of
solving such systems.

Recall that in the one dimensional situation the solution is x = x0 exp (A (t� t0)) :
If we could make sense of this for square matrices A as well we would have a possi-
ble way of writing down the solutions. The concept of operator norms introduced
in �Orthonormal Bases� naturally leads to a norm of matrices as well. One key
observation about this norm is that if A = [�ij ] ; then j�ij j � jjAjj ; i.e., the entries
are bounded by the norm. Moreover we also have that

kABk � kAk kBk ;
kA+Bk � kAk+ kBk

as

kAB (x)k � kAk kB (x)k
� kAk kBk kxk ;

k(A+B) (x)k � kA (x)k+ kB (x)k :
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Now consider the series
1X
n=0

An

n!
:

Since 



Ann!




 � kAknn!

;

and
1X
n=0

kAkn

n!

is convergent it follows that any given entry in
1X
n=0

An

n!

is bounded by a convergent series. Thus the matrix series also converges leading us
to de�ne

exp (A) =
1X
n=0

An

n!
:

It is not hard to check that if L 2 hom (V; V ) ; where V is a �nite dimensional
inner product space, then we can similarily de�ne

exp (L) =
1X
n=0

Ln

n!
:

Now consider the matrix valued function

exp (At) =
1X
n=0

Antn

n!

and with it the vector valued function

x (t) = exp (A (t� t0))x0:
It still remains to be seen that this de�nes a di¤erentiable function that solves
_x = Ax: At least we have the correct initial value as exp (0) = 1Fn from our
formula. To check di¤erentiability we consider the matrix function t ! exp (At)
and study exp (A (t+ h)) : In fact we claim that

exp (A (t+ h)) = exp (At) exp (Ah) :

To establish this we prove a more general version together with another useful fact.

Proposition 22. Let L;K : V ! V be linear operators on a �nite dimensional
inner product space.

(1) If KL = LK; then exp (K + L) = exp (K) � exp (L) :
(2) If K is invertible, then exp

�
K � L �K�1� = K � exp (L) �K�1:

Proof. 1. This formula hinges on proving the binomial formula for commuting
operators:

(L+K)
n

=
nX
k=0

�
n

k

�
LkKn�k;�

n

k

�
=

n!

(n� k)!k!
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This formula is obvious for n = 1: Suppose that the formula holds for n: Using the
conventions �

n

n+ 1

�
= 0;�

n

�1

�
= 0;

together with the formula from Pascal�s triangle�
n

k � 1

�
+

�
n

k

�
=

�
n+ 1

k

�
;

it follows that

(L+K)
n+1

= (L+K)
n
(L+K)

=

 
nX
k=0

�
n

k

�
LkKn�k

!
(L+K)

=

nX
k=0

�
n

k

�
LkKn�kL+

nX
k=0

�
n

k

�
LkKn�kK

=
nX
k=0

�
n

k

�
Lk+1Kn�k +

nX
k=0

�
n

k

�
LkKn�k+1

=
n+1X
k=0

�
n

k � 1

�
LkKn+1�k +

n+1X
k=0

�
n

k

�
LkKn+1�k

=
n+1X
k=0

��
n

k � 1

�
+

�
n

k

��
LkKn+1�k

=
n+1X
k=0

�
n+ 1

k

�
LkKn+1�k:

We can then compute

NX
n=0

(K + L)
n

n!
=

NX
n=0

nX
k=0

1

n!

�
n

k

�
LkKn�k

=
NX
n=0

nX
k=0

1

(n� k)!k!L
kKn�k

=
NX
n=0

nX
k=0

�
1

k!
Lk
��

1

(n� k)!K
n�k

�

=
NX

k;l=0;k+l�N

�
1

k!
Lk
��

1

l!
Kl

�
The last term is unfortunately not quite the same as the product

NX
k;l=0

�
1

k!
Lk
��

1

l!
Kl

�
=

 
NX
k=0

1

k!
Lk

! 
NX
l=0

1

l!
Kl

!
;
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However the di¤erence between these two sums can be estimated the following way:






NX

k;l=0

�
1

k!
Lk
��

1

l!
Kl

�
�

NX
k;l=0;k+l�N

�
1

k!
Lk
��

1

l!
Kl

�






=








NX

k;l=0;k+l>N

�
1

k!
Lk
��

1

l!
Kl

�






�

NX
k;l=0;k+l>N

�
1

k!
kLkk

��
1

l!
kKkl

�

�
NX

k=0;l=N=2

�
1

k!
kLkk

��
1

l!
kKkl

�
+

NX
l=0;k=N=2

�
1

k!
kLkk

��
1

l!
kKkl

�

=

 
NX
k=0

1

k!
kLkk

!0@ NX
l=N=2

1

l!
kKkl

1A+
0@ NX
k=N=2

1

k!
kLkk

1A NX
l=0

1

l!
kKkl

!

� exp (kLk)

0@ NX
l=N=2

1

l!
kKkl

1A+ exp (kKk)
0@ NX
k=N=2

1

k!
kLkk

1A :

Since

lim
N!1

NX
l=N=2

1

l!
kKkl = 0;

lim
N!1

NX
k=N=2

1

k!
kLkk = 0

it follows that

lim
N!1







NX
n=0

(K + L)
n

n!
�
 

NX
k=0

1

k!
Lk

! 
NX
l=0

1

l!
Kl

!




 = 0:
Thus

1X
n=0

(K + L)
n

n!
=

1X
k=0

�
1

k!
Lk
� 1X
l=0

�
1

l!
Kl

�
as desired.

2. This is considerably simpler and uses that�
K � L �K�1�n = K � Ln �K�1:

This is again proven by induction. First observe it is trivial for n = 1 and then
that �

K � L �K�1�n+1 =
�
K � L �K�1�n �K � L �K�1

= K � Ln �K�1 �K � L �K�1

= K � Ln � L �K�1

= K � Ln+1 �K�1:
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Thus
NX
n=0

�
K � L �K�1�n

n!
=

NX
n=0

K � Ln �K�1

n!

= K �
 

NX
n=0

Ln

n!

!
�K�1:

By letting N !1 we get the desired formula. �

To calculate the derivative of exp (At) we observe that

exp (A (t+ h))� exp (At)
h

=
exp (Ah) exp (At)� exp (At)

h

=

�
exp (Ah)� 1Fn

h

�
exp (At) :

Using the de�nition of exp (Ah) it follows that

exp (Ah)� 1Fn
h

=
1X
n=1

1

h

Anhn

n!

=
1X
n=1

Anhn�1

n!

= A+
1X
n=2

Anhn�1

n!
:

Since 





1X
n=2

Anhn�1

n!






 �
1X
n=2

kAkn jhjn�1

n!

= kAk
1X
n=2

kAkn�1 jhjn�1

n!

= kAk
1X
n=2

kAhkn�1

n!

� kAk
1X
n=1

kAhkn

= kAk kAhk 1

1� kAhk
! 0 as jhj ! 0

we get that

lim
jhj!0

exp (A (t+ h))� exp (At)
h

=

�
lim
jhj!0

exp (Ah)� 1Fn
h

�
exp (At)

= A exp (At) :

Therefore, if we de�ne
x (t) = exp (A (t� t0))x0;
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then

_x = A exp (A (t� t0))x0
= Ax:

The other problem we should solve at this point is uniqueness of solutions.
To be more precise, if we have that both x and y solve the initial value problem
_x = Ax; x (t0) = x0; then we wish to prove that x = y: Inner products can be used
quite e¤ectively to prove this as well. We consider the nonnegative function

� (t) = kx (t)� y (t)k2

= (x1 � y1)2 + � � �+ (xn � yn)2 :

In the complex situation simply identify Cn = R2n and use the 2n real coordinates
to de�ne this norm. Recall that this norm comes from the usual inner product on
Euclidean space. The derivative satis�es

d�

dt
(t) = 2 ( _x1 � _y1) (x1 � y1) + � � �+ 2 ( _xn � _yn) (xn � yn)

= 2 (( _x� _y) j (x� y))
= 2 (A (x� y) j (x� y))
� 2 kA (x� y)k kx� yk
� 2 kAk kx� yk2

= 2 kAk� (t) :

Thus we have
d�

dt
(t)� 2 kAk� (t) � 0:

If we multiply this by the positive integrating factor exp (�2 jjAjj (t� t0)) and use
Leibniz�rule in reverse we obtain

d

dt
(� (t) exp (�2 kAk (t� t0))) � 0

Together with the initial condition � (t0) = 0 this yields

� (t) exp (�2 kAk (t� t0)) � 0; for t � t0:

Since the integrating factor is positive and � is nonnegative it must follow that
� (t) = 0 for t � t0: A similar argument using � exp (�2 kAk (t� t0)) can be used
to show that � (t) = 0 for t � t0: Altogether we have established that the initial
value problem _x = Ax; x (t0) = x0 always has a unique solution for matrices A
with real (or complex) scalars as entries.

To explicitly solve these linear di¤erential equations it is often best to under-
stand higher order equations �rst and then use the cyclic subspace decomposition
from chapter 2 to reduce systems to higher order equations. At the end of chapter
4 we shall give another method for solving systems of equations that does not use
higher order equations.

7.1. Exercises.
(1) Let f (z) =

P1
n=0 anz

n de�ne a power series and A 2 Matn�n (F) : Show
that one can de�ne f (A) as long as kAk < radius of convergence.

(2) Let L : V ! V be an operator on a �nite dimensional inner product space.
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(a) If kLk < 1; then 1V + L has an inverse. Hint:

(1V + L)
�1
=

1X
n=1

(�1)n Ln:

(b) With L as above show

L�1

 � 1

1� kLk ;


(1V + L)�1 � 1V 


 � kLk
1� kLk :

(c) If


L�1

 � "�1 and kL�Kk < "; then K is invertible and

K�1

 �



L�1


1� kL�1 (K � L)k ;

L�1 �K�1

 �



L�1

2
(1� kL�1k kL�Kk)2

kL�Kk :

(3) Let L : V ! V be an operator on a �nite dimensional inner product space.
(a) If � is an eigenvalue for L; then

j�j � kLk :
(b) Give examples of 2� 2 matrices where strict inequality always holds.

(4) Show that

x (t) =

�
exp (A (t� t0))

Z t

t0

exp (�A (s� t0)) f (s) ds
�
x0

solves the initial value problem _x = Ax+ f (t) ; x (t0) = x0:
(5) Let A = B+C 2 Matn�n (R) where B is invertible and kCk is very small

compared to kBk :
(a) Show that B�1 �B�1CB�1 is a good approximation to A�1:
(b) Use this to approximate the inverse to2664

1 0 1000 1
0 �1 1 1000
2 1000 �1 0
1000 3 2 0

3775 :



CHAPTER 4

Linear Operators on Inner Product Spaces

In this chapter we are going to study linear operators on inner product spaces.
In the last chapter we introduced adjoints of linear maps between possibly di¤erent
inner product spaces. Here we shall see how the adjoint can be used to understand
linear operators on a �xed inner product space. The important opeartors we study
here are the self-adjoint, skew-adjoint, normal, orthogonal and unitary operators.
We shall spend several sections on the existence of eigenvalues, diagonalizability
and canonical forms for these special but important linear operators. Having done
that we go back to the study of general linear maps and operators and establish
the singular value and polar decompositions. We also show Schur�s theorem to the
e¤ect that complex linear operators have upper triangular matrix representations.
It is possible to start this chapter by proving Schur�s theorem and then use it to
prove the Spectral theorems. The chapter �nishes with a section on quadratic forms
and how they tie in with the theory of self-adjoint operators. The second derivative
test for critical points is also discussed.

We want to emphasize again that it is possible to cover the material in this
chapter without �rst having been through chapter 2.

1. Self-adjoint Maps

A linear operator L : V ! V is called self-adjoint if L� = L: These were
precisely the maps that were investigated in the previous section in the context of
studying the di¤erential of f (x) = (L (x) jx) : Note that a real m � m matrix A
is self-adjoint precisely when it is symmetric, i.e., A = At: The �opposite�of being
self-adjoint is skew-adjoint : L� = �L:

When the inner product is real we also say the operator is symmetric or skew-
symmetric. In case the inner product is complex these operators are also called
Hermitian or skew-Hermitian.

Example 75. (1)
�
0 ��
� 0

�
is skew-adjoint if � is real.

(2)
�
� �i�
i� �

�
is self-adjoint if � and � are real.

(3)
�
i� ��
� i�

�
is skew-adjoint if � and � are real.

(4) In general, a complex 2� 2 self-adjoint matrix looks like�
� � + i


� � i
 �

�
; �; �; 
; � 2 R:

197
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(5) In general, a complex 2� 2 skew-adjoint matrix looks like�
i� i� � 


i� + 
 i�

�
; �; �; 
; � 2 R:

Example 76. We saw in chapter 3 �Orthogonal Projections Revisited� that
self-adjoint projections are precisely the orthogonal projections.

Example 77. If L : V ! W is a linear map we can create two self-adjoint
maps L�L : V ! V and LL� :W !W:

Example 78. Consider the space of periodic functions C12� (R;C) with the inner
product

(xjy) = 1

2�

Z 2�

0

x (t) y (t)dt:

The linear operator

D (x) =
dx

dt
can be seen to be skew-adjoint even though we haven�t de�ned the adjoint of maps
on in�nite dimensional spaces. In general we say that a map is self-adjoint or
skew-adjoint if

(L (x) jy) = (xjL (y)) , or
(L (x) jy) = � (xjL (y))

for all x; y: Using that de�nition we note that integration by parts implies our claim:

(D (x) jy) =
1

2�

Z 2�

0

�
dx

dt
(t)

�
y (t)dt

=
1

2�
x (t) y (t)j2�0 �

1

2�

Z 2�

0

x (t)
dy

dt
(t)dt

= � (xjD (y)) :
In quantum mechanics one often makes D self-adjoint by instead considering iD.

In analogy with the formulae

exp (x) =
exp (x) + exp (�x)

2
+
exp (x)� exp (�x)

2
= cosh (x) + sinh (x) ;

we have

L =
1

2
(L+ L�) +

1

2
(L� L�) ;

L� =
1

2
(L+ L�)� 1

2
(L� L�)

where 12 (L+ L
�) is self-adjoint and 1

2 (L� L
�) is skew-adjoint. In the complex case

we also have

exp (ix) =
exp (ix) + exp (�ix)

2
+
exp (ix)� exp (�ix)

2

=
exp (ix) + exp (�ix)

2
+ i
exp (ix)� exp (�ix)

2i
= cos (x) + i sin (x) ;
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which is a nice analogy for

L =
1

2
(L+ L�) + i

1

2i
(L� L�) ;

L� =
1

2
(L+ L�)� i 1

2i
(L� L�)

where now also 1
2i (L� L

�) is self-adjoint. The idea behind this formula is that
multiplication by i takes skew-adjoint maps to self-adjoints maps and vice versa.

Self- and skew-adjoint maps are clearly quite special by virtue of their de�n-
itions. The above decomposition which has quite a lot in common with dividing
functions into odd and even parts or dividing complex numbers into real and imag-
inary parts seems to give some sort of indication that these maps could be central
to the understanding of general linear maps. This is not quite true, but we shall
be able to get a grasp on quite a lot of di¤erent maps.

Aside from these suggestive properties, self- and skew-adjoint maps are both
completely reducible or semi-simple. This means that for each invariant subspace
one can always �nd a complementary invariant subspace. Recall that maps like

L =

�
0 1
0 0

�
: R2 ! R2

can have invariant subspaces without having complementary subspaces that are
invariant.

Proposition 23. (Reducibility of Self- or Skew-adjoint Operators) Let L :
V ! V be a linear operator on a �nite dimensional inner product space. If L
is self- or skew-adjoint, then for each invariant subspace M � V the orthogonal
complement is also invariant, i.e., if L (M) �M; then L

�
M?� �M?:

Proof. Assume that L (M) � M: Let x 2 M and z 2 M?: Since L (x) 2 M
we have

0 = (zjL (x))
= (L� (z) jx)
= � (L (z) jx) :

As this holds for all x 2M it follows that L (z) 2M?: �
This property almost tells us that these operators are diagonalizable. Cer-

tainly in the case where we have complex scalars it must follow that such maps
are diagonalizable. In the case of real scalars the problem is that it is not clear
that self- and/or skew-adjoint maps have any invariant subspaces whatsoever. The
map which is rotation by 90� in the plane is clearly skew-symmetric, but it has no
nontrivial invariant subspaces. Thus we can�t make the map any simpler. We shall
see below that this is basically the worst scenario that we will encounter for such
maps.

1.1. Exercises.
(1) Let L : Pn ! Pn be a linear map on the space of real polynomials of

degree � n such that [L] with respect to the standard basis 1; t; :::; tn is
self-adjoint. Is L self-adjoint if we use the inner product

(pjq) =
Z b

a

p (t) q (t) dt ?
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(2) If V is �nite dimensional show that the three subsets of hom (V; V ) de�ned
by

M1 = span f1V g ;
M2 = fL : L is skew-adjointg ;
M3 = fL : trL = 0 and L is self-adjointg

are subspaces over R, are mutually orthogonal with respect to the real
inner product Re (L;K) = Re (tr (L�K)) ; and yield a direct sum decom-
position of hom (V; V ) :

(3) Let E be an orthogonal projection and L a linear operator. Recall from
exercises to �Cyclic Subspaces� in chapter 2 and �Orthogonal Comple-
ments and Projections�in chapter 3 that L leaves M = im (E) invariant
if and only if ELE = LE and that M �M? reduces L if and only if
EL = LE: Show that if L is skew- or self-adjoint and ELE = LE; then
EL = LE:

(4) Let V be a complex inner product space. Show that multiplication by i
yields a bijection between self-adjoint and skew-adjoint operators on V: Is
this map linear?

(5) Show that D2k : C12� (R;C)! C12� (R;C) is self-adjoint and that D2k+1 :
C12� (R;C)! C12� (R;C) is skew-adjoint.

(6) Let x1; :::; xk be vectors in an inner product space V: Show that the k� k
matrix G (x1; :::; xk) whose ij entry is (xj jxi) is self-adjoint and that all
its eigenvalues are nonnegative.

(7) Let L : V ! V be a self-adjoint operator on a �nite dimensional inner
product space and p 2 R [t] a real polynomial. Show that p (L) is also self
adjoint.

(8) Assume that L : V ! V is self-adjoint and � 2 R. Show
(a) ker (L) = ker

�
Lk
�
for any k � 1: Hint: Start with k = 2:

(b) im (L) = im
�
Lk
�
for any k � 1:

(c) ker (L� �1V ) = ker
�
(L� �1V )k

�
for any k � 1:

(d) mL (t) has no multiple roots.
(9) Assume that L : V ! V is self-adjoint.

(a) Show that the eigenvalues of L are real.
(b) In case V is complex show that L has an eigenvalue.
(c) In case V is real show that L has an eigenvalue. Hint: Choose an

orthonormal basis and observe that [L] 2 Matn�n (R) � Matn�n (C)
is also self-adjoint as a complex matrix. Thus all roots of �[L] (t)
must be real by a.

(10) Assume that L1; L2 : V ! V are both self-adjoint or skew-adjoint.
(a) Show that L1L2 is skew-adjoint if and only if L1L2 + L2L1 = 0:
(b) Show that L1L2 is self-adjoint if and only if L1L2 = L2L1:
(c) Give an example where L1L2 is neither self-adjoint nor skew-adjoint.

2. Polarization and Isometries

The idea of polarization is that many bilinear expressions such as (xjy) can be
expressed as a sum of quadratic terms jjzjj2 = (zjz) for suitable z:
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Let us start with a real inner product on V: Then

(x+ yjx+ y) = (xjx) + 2 (xjy) + (yjy)

so

(xjy) =
1

2
((x+ yjx+ y)� (xjx)� (yjy))

=
1

2

�
kx+ yk2 � kxk2 � kyk2

�
:

Since complex inner products are only conjugate symmetric we only get

(x+ yjx+ y) = (xjx) + 2Re (xjy) + (yjy) ;

which implies

Re (xjy) = 1

2

�
jjx+ yjj2 � jjxjj2 � jjyjj2

�
:

Nevertheless the real part of the complex inner product determines the entire inner
product as

Re (xjiy) = Re (�i (xjy))
= Im (xjy) :

In particular we have

Im (xjy) = 1

2

�
kx+ iyk2 � kxk2 � kiyk2

�
:

We can use these ideas to check when linear operators L : V ! V are zero.
First we note that L = 0 if and only if (L (x) jy) = 0 for all x; y 2 V: To check
the �if�part just let y = L (x) to see that kL (x)k2 = 0 for all x 2 V: When L is
self-adjoint this can be improved.

Proposition 24. (Characterization of Self-adjoint Operators) Let L : V ! V
be self-adjoint. Then L = 0 if and only if (L (x) jx) = 0 for all x 2 V:

Proof. There is nothing to prove when L = 0:
Conversely assume that (L (x) jx) = 0 for all x 2 V: The polarization trick from

above implies

0 = (L (x+ y) jx+ y)
= (L (x) jx) + (L (x) jy) + (L (y) jx) + (L (y) jy)
= (L (x) jy) + (yjL� (x))
= (L (x) jy) + (yjL (x))
= 2Re (L (x) jy) :

Next insert y = L (x) to see that

0 = Re (L (x) jL (x))
= kL (x)k2

as desired. �



202 4. LINEAR OPERATORS ON INNER PRODUCT SPACES

If L is not self-adjoint there is no reason to think that such a result should hold.
For instance when V is a real inner product space and L is skew-adjoint, then we
have

(L (x) jx) = � (xjL (x))
= � (L (x) jx)

so (L (x) jx) = 0 for all x. It is therefore somewhat surprising that we can use the
complex polarization trick to prove the next result.

Proposition 25. Let L : V ! V be a linear operator on a complex inner
product space. Then L = 0 if and only if (L (x) jx) = 0 for all x 2 V:

Proof. There is nothing to prove when L = 0:
Conversely assume that (L (x) jx) = 0 for all x 2 V: We use the complex

polarization trick from above.

0 = (L (x+ y) jx+ y)
= (L (x) jx) + (L (x) jy) + (L (y) jx) + (L (y) jy)
= (L (x) jy) + (L (y) jx)

0 = (L (x+ iy) jx+ iy)
= (L (x) jx) + (L (x) jiy) + (L (iy) jx) + (L (iy) jiy)
= �i (L (x) jy) + i (L (y) jx)

This yields a system �
1 1
�i i

� �
(L (x) jy)
(L (y) jx)

�
=

�
0
0

�
:

Since the columns of
�
1 1
�i i

�
are linearly independent the only solution is the

trivial one. In particular (L (x) jy) = 0. �

Polarization can also be used to give a nice characterization of isometries. These
properties tie in nicely with our observation that�

e1 � � � en
��
=
�
e1 � � � en

��1
when e1; :::; en is an orthonormal basis.

Proposition 26. Let L : V ! W be a linear map between inner product
spaces, then the following are equivalent.

(1) kL (x)k = kxk for all x 2 V:
(2) (L (x) jL (y)) = (xjy) for all x; y 2 V:
(3) L�L = 1V
(4) L takes orthonormal sets of vectors to orthonormal sets of vectors.

Proof. 1 =) 2 : Depending on whether we are in the complex or real case
simply write (L (x) jL (y)) and (xjy) in terms of norms and use 1 to see that both
terms are the same.

2 =) 3 : Just use that (L�L (x) jy) = (L (x) jL (y)) = (xjy) for all x; y 2 V:
3 =) 4 : We are assuming (xjy) = (L�L (x) jy) = (L (x) jL (y)) ; which imme-

diately implies 4:
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4 =) 1 : Evidently L takes unit vectors to unit vectors. So 1 holds if jjxjj = 1:
Now use the scaling property of norms to �nish the argument. �

Recall the de�nition of the operator norm for linear maps L : V !W

kLk = max
kxk=1

kL (x)k :

It was shown in �Orthonormal Bases� in chapter 3 that this norm is �nite. It is
important to realize that this operator norm is not the same as the norm we get
from the inner product (LjK) = tr (LK�) de�ned on hom (V;W ) : To see this it
su¢ ces to consider 1V : Clearly k1V k = 1; but (1V j1V ) = tr (1V 1V ) = dim (V ) :

Corollary 26. Let L : V !W be a linear map between inner product spaces
such that kL (x)k = kxk for all x 2 V; then kLk = 1:

Corollary 27. (Characterization of Isometries) Let L : V ! W be an iso-
morphism, then L is an isometry if and only if L� = L�1:

Proof. If L is an isometry then it satis�es all of the above 4 conditions. In
particular, L�L = 1V so if L is invertible it must follow that L�1 = L�:

Conversely, if L�1 = L�; then L�L = 1V and it follows from the previous result
that L is an isometry. �

Just as for self-adjoint and skew-adjoint operators we have that isometries are
completely reducible or semi-simple.

Corollary 28. (Reducibility of Isometries) Let L : V ! V be a linear operator
that is also an isometry. If M � V is L invariant, then so is M?:

Proof. If x 2M and y 2M?; then we note that

0 = (L (x) jy) = (xjL� (y)) :
Therefore L� (y) = L�1 (y) 2 M? for all y 2 M?: Now observe that L�1jM? :
M? !M? must be an isomorphism as its kernel is trivial. This implies that each
z 2 M? is of the form z = L�1 (y) for y 2 M?: Thus L (z) = y 2 M? and hence
M? is L invariant. �

In the special case where V =W = Rn we call the linear isometries orthogonal
matrices. The collection of orthogonal matrices is denoted On: Note that these
matrices are a subgroup of Gln (Rn), i.e., if O1; O2 2 On then O1O2 2 On: In
particular, we see that On is itself a group. Similarly when V = W = Cn we have
the subgroup of unitary matrices Un � Gln (Cn) consisting of complex matrices
that are also isometries.

2.1. Exercises.
(1) On Matn�n (R) use the inner product (AjB) = tr (ABt) : Consider the

linear operator L (X) = Xt: Show that L is orthogonal. Is it skew- or
self-adjoint?

(2) OnMatn�n (C) use the inner product (AjB) = tr (AB�) : ForA 2 Matn�n (C)
consider the two linear operators onMatn�n (C) de�ned by LA (X) = AX;
RA (X) = XA: Show that
(a) LA and RA are unitary if A is unitary.
(b) LA and RA are self- or skew-adjoint if A is self- or skew-adjoint.
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(3) Show that the operatorD de�nes an isometry on both spanC fexp (it) ; exp (�it)g
and spanR fcos (t) ; sin (t)g if we use the inner product inherited from
C12� (R;C) :

(4) Let L : V ! V be a complex operator on a complex inner product space.
Show that L is self-adjoint if and only if (L (x) jx) is real for all x 2 V:

(5) Let L : V ! V be a real operator on a real inner product space. Show
that L is skew-adjoint if and only if (L (x) jx) = 0 for all x 2 V:

(6) Let e1; :::; en be an orthonormal basis for V and assume that L : V !W
has the property that L (e1) ; :::; L (en) is an orthonormal basis for W:
Show that L is an isometry.

(7) Let L : V ! V be a linear operator on a �nite dimensional inner product
space. Show that if L � K = K � L for all isometries K : V ! V , then
L = �1V :

(8) Let L : V ! V be a linear operator on an inner product space such that
(L (x) jL (y)) = 0 if (xjy) = 0:
(a) Show that if kxk = kyk and (xjy) = 0, then kL (x)k = kL (y)k : Hint:

Use and show that x+ y and x� y are perpendicular.
(b) Show that L = �U; where U is an isometry.

(9) Let V be a �nite dimensional real inner product space and F : V ! V be
a bijective map that preserves distances, i.e., for all x; y 2 V

kF (x)� F (y)k = kx� yk :
(a) Show that G (x) = F (x) � F (0) also preserves distances and that

G (0) = 0:
(b) Show that kG (x)k = kxk for all x 2 V:
(c) Using polarization to show that (G (x) jG (y)) = (xjy) for all x; y 2 V:

(See also next the exercise for what can happen in the complex case.)
(d) If e1; :::; en is an orthonormal basis, then show that G (e1) ; :::; G (en)

is also an orthonormal basis.
(e) Show that

G (x) = (xje1)G (e1) + � � �+ (xjen)G (en) ;
and conclude that G is linear.

(f) Conclude that F (x) = L (x) + F (0) for a linear isometry L:
(10) On Matn�n (C) use the inner product (AjB) = tr (AB�) : Consider the

map L (X) = X�:
(a) Show that L is real linear but not complex linear.
(b) Show that

kL (X)� L (Y )k = kX � Y k
for all X;Y but that

(L (X) jL (Y )) 6= (XjY )
for some choices of X;Y:

3. The Spectral Theorem

We are now ready to present and prove the most important theorem about when
it is possible to �nd a basis that diagonalizes a special class of operators. There
are several reasons for why this particular result is important. Firstly, it forms
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the foundation for all of our other results for linear maps between inner product
spaces, including isometries, skew-adjoint maps and general linear maps between
inner product spaces. Secondly, it is the one result of its type that has a truly
satisfying generalization to in�nite dimensional spaces. In the in�nite dimensional
setting it becomes a corner stone for several developments in analysis, functional
analysis, partial di¤erential equations, representation theory and much more. First
we revisit some material from �Diagonalizability�in chapter 2.

Our general goal for linear operators L : V ! V is to �nd a basis such that the
matrix representation for L is as simple as possible. Since the simplest matrices are
the diagonal matrices one might well ask if it is always possible to �nd a basis x1;
:::; xm that diagonalizes L; i.e., L (x1) = �1x1; :::; L (xm) = �mxm? The central
idea behind �nding such a basis is quite simple and reappears in several proofs
in this chapter. Given some special information about the vector space V or the
linear operator L on V we show that L� has an eigenvector x 6= 0 and that the
orthogonal complement to x in V is L invariant. The existence of this invariant
subspace of V then indicates that the procedure for establishing a particular result
about exhibiting a nice matrix representation for L is a simple induction on the
dimension of the vector space.

A rotation by 90� in R2 does not have a basis of eigenvectors. However, if we
interpret it as a complex map on C it is just multiplication by i and therefore of
the desired form. We could also view the 2� 2 matrix as a map on C2: As such we
can also diagonalize it by using x1 = (i; 1) and x2 = (�i; 1) so that x1 is mapped
to ix1 and x2 to �ix2:

A much worse example is the linear map represented by

A =

�
0 1
0 0

�
:

Here x1 = (1; 0) does have the property that Ax1 = 0; but it is not possible to �nd
x2 linearly independent from x1 so that Ax2 = �x2: In case � = 0 we would just
have A = 0 which is not true. So � 6= 0; but then x2 2 im (A) = span fx1g. Note
that using complex scalars cannot alleviate this situation due to the very general
nature of the argument.

At this point it should be more or less clear that the �rst goal is to show that
self-adjoint operators have eigenvalues. Recall that in chapter 2 we constructed
a characteristic polynomial for L with the property that any eigenvalue must be
a root of this polynomial. This is �ne if we work with complex scalars, but less
satisfactory if we use real scalars although it is in fact not hard to deal with by
passing to suitable matrix representations (see exercises to �Self-adjoint Maps�).
It is possible to give a very elegant proof that self-adjoint operators have eigenval-
ues using Lagrange multipliers.We shall give a similar proof here that doesn�t use
multivariable derivatives.

Theorem 32. (Existence of Eigenvalues for Self-adjoint Operators) Let L :
V ! V be self-adjoint and V �nite dimensional, then L has a real eigenvalue.

Proof. As in the Lagrange multiplier proof we use the compact set S =
fx 2 V : (xjx) = 1g and the real valued function x ! (Lxjx) on S: Select x1 2 S
so that

(Lxjx) � (Lx1jx1)
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for all x 2 S: If we de�ne �1 = (Lx1jx1) ; then this implies that

(Lxjx) � �1; for all x 2 S:

Consequently

(Lxjx) � �1 (xjx) = �1 jjxjj2 ; for all x 2 V:
This shows that the function

f (x) =
(Lxjx)
jjxjj2

has a maximum at x = x1 and that the value there is �1:
This implies that for any y 2 V; the function t ! f (x1 + ty) has a maximum

at t = 0 and and hence the derivative at t = 0 is zero. To be able to use this we
need to compute the derivative of the quotient

(L (x1 + ty) jx1 + ty)
jjx1 + tyjj2

with respect to t at t = 0: We start by computing the derivative of the numerator
at t = 0 using the de�nition of a derivative

lim
h!0

(L (x1 + hy) jx1 + hy)� (L (x1) jx1)
h

= lim
h!0

(L (hy) jx1) + (L (x1) jhy) + (L (hy) jhy)
h

= lim
h!0

(hyjL (x1)) + (L (x1) jhy) + (L (hy) jhy)
h

= (yjL (x1)) + (L (x1) jy) + lim
h!0

(L (y) jhy)

= 2Re (L (x1) jy) :

The derivate of the denominator is computed the same way simply observing that
we can let L = 1V : The derivative of the quotient f (x1 + ty) at t = 0 is then

0 =
2Re (L (x1) jy) jjx1jj2 � 2Re (x1jy) (L (x1) jx1)

jjx1jj4

= 2Re (L (x1) jy)� 2Re (x1jy)�1
= 2Re (L (x1)� �1x1jy) :

By using y = L (x1)� �1x1 we then see that �1 and x1 form an eigenvalue/vector
pair. �

We can now prove.

Theorem 33. (The Spectral Theorem) Let L : V ! V be a self-adjoint opera-
tor on a �nite dimensional inner product space. Then there exists an orthonormal
basis e1; :::; en of eigenvectors, i.e., L (e1) = �1e1; :::; L (en) = �nen: Moreover, all
eigenvalues �1; :::; �n are real.

Proof. We just proved that we can �nd an eigenvalue/vector pair L (e1) =
�1e1: Recall that �1 was real and we can, if necessary, multiply e1 by a suitable
scalar to make it a unit vector.
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Next we use self-adjointness of L again to see that L leaves the orthogonal
complement to e1 invariant, i.e., L (M) �M; where M = fx 2 V : (xje1) = 0g : To
see this let x 2M and calculate

(L (x) je1) = (xjL� (e1))
= (xjL (e1))
= (xj�1e1)
= ��1 (xje1)
= 0:

Now we have a new operator L : M ! M on a space of dimension dimM =
dimV �1:We note that this operator is also self-adjoint. Thus we can use induction
on dimV to prove the theorem. Alternatively we can extract an eigenvalue/vector
pair L (e2) = �2e2, where e2 2 M is a unit vector and then pass down to the
orthogonal complement of e2 inside M: This procedure will end in dimV steps and
will also generate an orthonormal basis of eigenvectors as the vectors are chosen
successively to be orthogonal to each other. �

In the notation of �Linear Maps as Matrices�from chapter 1 we have proven.

Corollary 29. Let L : V ! V be a self-adjoint operator on a �nite dimen-
sional inner product space. There exists an orthonormal basis e1; :::; en of eigenvec-
tors and a real n� n diagonal matrix D such that

L =
�
e1 � � � en

�
D
�
e1 � � � en

��
=

�
e1 � � � en

� 264 �1 � � � 0
...

. . .
...

0 � � � �n

375 � e1 � � � en
��

The same eigenvalue can apparently occur several times, just think of 1V :
Recall that the geometric multiplicity of an eigenvalue is dim (ker (L� �1V )) : This
is clearly the same as the number of times it occurs in the above diagonal form of
the operator. Thus the basis vectors that correspond to � in the diagonalization
yield a basis for ker (L� �1V ) : With this in mind we can rephrase the Spectral
theorem.

Theorem 34. Let L : V ! V be a self-adjoint operator on a �nite dimensional
inner product space and �1; :::; �k the distinct eigenvalues for L: Then

1V = projker(L��11V )+ � � �+ projker(L��k1V )
and

L = �1 projker(L��11V )+ � � �+ �k projker(L��k1V ) :
Proof. The missing piece that we need to establish is that the eigenspaces are

mutually orthogonal to each other. This actually follows from our constructions in
the proof of the spectral theorem. Nevertheless it is desirable to have a direct proof
of this. Let L (x) = �x and L (y) = �y; then

� (xjy) = (L (x) jy)
= (xjL (y))
= (xj�y)
= � (xjy) since � is real.
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If � 6= �; then we get
(�� �) (xjy) = 0;

which implies (xjy) = 0:
We this in mind we can now see that if xi 2 ker (L� �i1V ) ; then

projker(L��j1V ) (xi) =

�
xj if i = j
0 if i 6= j

as xi is perpendicular to ker (L� �j1V ) in case i 6= j: Since we can write x =
x1 + � � �+ xk; where xi 2 ker (L� �i1V ) we have

projker(L��i1V ) (x) = xi

This shows that

x = projker(L��11V ) (x) + � � �+ projker(L��k1V ) (x)

as well as

L (x) =
�
�1 projker(L��11V )+ � � �+ �k projker(L��k1V )

�
(x) :

�

The fact that we can diagonalize self-adjoint operators has an immediate con-
sequence for complex skew-adjoint operators as they become self-adjoint by multi-
plying them by i =

p
�1: Thus we have.

Corollary 30. (The Spectral Theorem for Complex Skew-adjoint Operators)
Let L : V ! V be a skew-adjoint operator on a complex �nite dimensional space.
Then we can �nd an orthonormal basis such that L (e1) = i�1e1; :::; L (en) = i�nen;
where �1; :::; �n 2 R:

It is worth pondering this statement. Apparently we haven�t said anything
about skew-adjoint real linear operators. The statement, however, does cover both
real and complex matrices as long as we view them as maps on Cn. It just so hap-
pens that the corresponding diagonal matrix has purely imaginary entries, unless
they are 0; and hence is forced to be complex.

Before doing several examples it is worthwhile trying to �nd a way of remem-
bering the formula

L =
�
e1 � � � en

�
D
�
e1 � � � en

��
:

If we solve it for D instead it reads

D =
�
e1 � � � en

��
L
�
e1 � � � en

�
:

This is quite natural as

L
�
e1 � � � en

�
=
�
�1e1 � � � �nen

�
and then observing that�

e1 � � � en
�� �

�1e1 � � � �nen
�

is the matrix whose ij entry is (�jej jei) since the rows
�
e1 � � � en

��
correspond

to the colomns in
�
e1 � � � en

�
: This gives a quick check for whether we have

the change of basis matrices in the right places.
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Example 79. Let

A =

�
0 �i
i 0

�
:

Then A is both self-adjoint and unitary. This shows that �1 are the only possible
eigenvalues. We can easily �nd nontrivial solutions to both equations (A� 1C2) (x) =
0 by observing that

(A� 1C2)
�
�i
1

�
=

�
�1 �i
i �1

� �
�i
1

�
= 0

(A+ 1C2)

�
1
i

�
=

�
1 �i
i 1

� �
i
1

�
= 0

The vectors

z1 =

�
�i
1

�
; z2 =

�
i
1

�
form an orthogonal set that we can normalize to an orthonormal basis of eigenvec-
tors

x1 =

"
�ip
2
1p
2

#
; x2 =

"
ip
2
1p
2

#
:

This means that

A =
�
x1 x2

� � 1 0
0 �1

� �
x1 x2

��1
;

or more concretely that�
0 �i
i 0

�
=

"
�ip
2

ip
2

1p
2

1p
2

# �
1 0
0 �1

�" ip
2

1p
2

�ip
2

1p
2

#
:

Example 80. Let

B =

�
0 �1
1 0

�
:

The corresponding self-adjoint matrix is�
0 �i
i 0

�
:

Using the identity�
0 �i
i 0

�
=

"
�ip
2

ip
2

1p
2

1p
2

# �
1 0
0 �1

�" ip
2

1p
2

�ip
2

1p
2

#
and then multiplying by �i to get back to�

0 �1
1 0

�
we obtain �

0 �1
1 0

�
=

"
�ip
2

ip
2

1p
2

1p
2

# �
�i 0
0 i

�" ip
2

1p
2

�ip
2

1p
2

#
:

It is often more convenient to �nd the eigenvalues using the characteristic poly-
nomial, to see why this is let us consider some more complicated examples.
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Example 81. We consider the real symmetric operator

A =

�
� �
� �

�
; �; � 2 R:

This time one can more or less readily see that

x1 =

�
1
1

�
; x2 =

�
1
�1

�
are eigenvectors and that the corresponding eigenvalues are (�� �) : But if one
didn�t guess that then computing the characteristic polynomial is clearly the way to
go.

Even with relatively simple examples such as

A =

�
1 1
1 2

�
things quickly get out of hand. Clearly the method of using Gauss elimination on
the system A � �1Cn and then �nding conditions on � that ensure that we have
nontrivial solutions is more useful in �nding all eigenvalues/vectors.

Example 82. Let us try this with

A =

�
1 1
1 2

�
:

Thus we consider �
1� � 1
1 2� �

0
0

�
�

1 2� �
1� � 1

0
0

�
�
1 (2� �)
0 � (1� �) (2� �) + 1

0
0

�
Thus there is a nontrivial solution precisely when

� (1� �) (2� �) + 1 = �1 + 3�� �2 = 0:
The roots of this polynomial are �1;2 = 3

2 �
1
2

p
5. The corresponding eigenvectors

are found by inserting the root and then �nding a nontrivial solution. Thus we are
trying to solve �

1 (2� �1;2)
0 0

0
0

�
which means that

x1;2 =

�
�1;2 � 2
1

�
:

We should normalize this to get a unit vector

e1;2 =
1q

5� 4�1;2 + (�1;2)2

�
�1;2 � 2
1

�

=
1q�

34� 10
p
5
� � �1�p51

�
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3.1. Exercises.
(1) Let L be self- or skew-adjoint on a complex �nite dimensional inner prod-

uct space.
(a) Show that L = K2 for some K : V ! V:
(b) Show by example that K need not be self-adjoint if L is self-adjoint.
(c) Show by example that K need not be skew-adjoint if L is skew-

adjoint.
(2) Diagonalize the matrix that is zero everywhere except for 1s on the an-

tidiagonal. 266664
0 � � � 0 1
... 1 0

0
...

1 0 � � � 0

377775
(3) Diagonalize the real matrix that has �s on the diagonal and �s everywhere

else. 26664
� � � � � �
� � �
...

. . .
...

� � � � � �

37775
(4) Let K;L : V ! V be self-adjoint operators on a �nite dimensional vec-

tor space. If KL = LK; then show that there is an orthonormal basis
diagonalizing both K and L:

(5) Let L : V ! V be self-adjoint. If there is a unit vector x 2 V such that

kL (x)� �xk � ";
then L has an eigenvalue � so that j�� �j � ":

(6) Let L : V ! V be self-adjoint. Show that either kLk or �kLk are
eigenvalues for L:

(7) If an operator L : V ! V on a �nite dimensional inner product space
satis�es one of the following 4 conditions, then it is said to be positive.
Show that these conditions are equivalent.
(a) L is self-adjoint with positivee eigenvalues.
(b) L is self-adjoint and (L (x) jx) > 0 for all x 2 V � f0g :
(c) L = K� �K for an injective operator K : V ! W; where W is also

an inner product space.
(d) L = K �K for an invertible self-adjoint operator K : V ! V:

(8) Let P : V ! V be a positive operator.
(a) If L : V ! V is self-adjoint, then PL is diagonalizable and has real

eigenvalues. (Note that PL is not necessarily selfadjoint).
(b) If Q : V ! V is positive, then QP is diagonalizable and has positive

eigenvalues.
(9) Let P;Q be two positive operators. If P 2 = Q2; then show that P = Q:
(10) Let P be a nonnegative operator, i.e., self-adjoint with nonnegative eigen-

values.
(a) Show that trP � 0:
(b) Show that P = 0 if and only if trP = 0:

(11) Let L : V ! V be a linear operator on an inner product space.
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(a) If L is self-adjoint, show that L2 is self-adjoint and has nonnegative
eigenvalues.

(b) If L is skew-adjoint, show that L2 is self-adjoint and has nonpositive
eigenvalues.

(12) Consider the Killing form on hom (V; V ) ; where V is a �nite dimensional
vector space of dimension > 1, de�ned by

K(L;K) = trL trK � tr (LK) :
(a) Show that K(L;K) = K (K;L) :
(b) Show that K ! K(L;K) is linear.
(c) Assume in addition that V is an inner product space. Show that

K(L;L) > 0 if L is skew-adjoint and L 6= 0:
(d) Show that K(L;L) < 0 if L is self-adjoint and L 6= 0:
(e) Show that K is nondegenerate, i.e., if L 6= 0; then we can �nd K 6= 0;

so that K(L;K) 6= 0:

4. Normal Operators

The concept of a normal operator is somewhat more general than the previous
special types of operators we have seen. The de�nition is quite simple and will
be motivated below. We say that an operator L : V ! V on an inner product
space is normal if LL� = L�L: With this de�nition it is clear that all self-adjoint,
skew-adjoint and isometric operators are normal.

First let us show that any operator that is diagonalizable with respect to an
orthonormal basis must be normal. Suppose that L is diagonalized in the orthonor-
mal basis e1; :::; en and that D is the diagonal matrix representation in this basis,
then

L =
�
e1 � � � en

�
D
�
e1 � � � en

��
=

�
e1 � � � en

� 264 �1 � � � 0
...

. . .
...

0 � � � �n

375 � e1 � � � en
��
;

and

L� =
�
e1 � � � en

�
D� � e1 � � � en

��
=

�
e1 � � � en

� 264
��1 � � � 0
...

. . .
...

0 � � � ��n

375 � e1 � � � en
��

Thus

LL� =
�
e1 � � � en

� 264 �1 � � � 0
...

. . .
...

0 � � � �n

375
264
��1 � � � 0
...

. . .
...

0 � � � ��n

375 � e1 � � � en
��

=
�
e1 � � � en

� 264 j�1j
2 � � � 0
...

. . .
...

0 � � � j�nj2

375 � e1 � � � en
��

= L�L
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since DD� = D�D:
For real operators we have already observed that they must be self-adjoint

in order to be diagonalizable with respect to an orthonormal basis. For complex
operators things are a little di¤erent as also skew-symmetric operators are diagonal-
izable with respect to an orthonormal basis. Below we shall generalize the spectral
theorem to normal operators and show that in the complex case these are precisely
the operators that can be diagonalized with respect to an orthonormal basis. The
canonical form for real normal operators is somewhat more complicated and will
be studied in �Real Forms�below.

Example 83. �
1 1
0 2

�
is not normal since �

1 1
0 2

� �
1 0
1 2

�
=

�
2 2
2 4

�
;�

1 0
1 2

� �
1 1
0 2

�
=

�
1 1
1 5

�
:

Nevertheless it is diagonalizable with respect to the basis

x1 =

�
1
0

�
; x2 =

�
1
1

�
as �

1 1
0 2

� �
1
0

�
=

�
1
0

�
;�

1 1
0 2

� �
1
1

�
=

�
2
2

�
= 2

�
1
1

�
:

While we can normalize x2 to be a unit vector there is nothing we can do about x1
and x2 not being perpendicular.

Example 84. Let

A =

�
� 

� �

�
: C2 ! C2:

Then

AA� =

�
� 

� �

� �
�� ��
�
 ��

�
=

�
j�j2 + j
j2 ��� + 
��

��� + �
� j�j2 + j�j2
�

A�A =

�
�� ��
�
 ��

� �
� 

� �

�
=

�
j�j2 + j�j2 ��
 + ���

��
 + ��� j
j2 + j�j2
�

So the conditions for A to be normal are

j�j2 = j
j2 ;
��
 + ��� = ��� + �
�

The last equation is easier to remember if we note that it means that the columns
of A must have the same inner product as the columns of A�.

Observe that unitary, self- and skew-adjoint operators are normal. Another
very simple normal operator that isn�t necessarily of those three types is �1V for
all � 2 C:
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Proposition 27. (Characterization of Normal Operators) Let L : V ! V be
an operator on an inner product space. Then the following conditions are equivalent.

(1) LL� = L�L:
(2) kL (x)k = kL� (x)k for all x 2 V:
(3) BC = CB; where B = 1

2 (L+ L
�) and C = 1

2 (L� L
�) :

Proof. 1() 2 : Note that for all x 2 V we have

kL (x)k = kL� (x)k
() kL (x)k2 = kL� (x)k2
() (L (x) jL (x)) = (L� (x) jL� (x))
() (xjL�L (x)) = (xjLL� (x))
() (xj (L�L� LL�) (x)) = 0
() L�L� LL� = 0

The last implication is a consequence of the fact that L�L� LL� is self-adjoint.
3() 1 : We note that

BC =
1

2
(L+ L�)

1

2
(L� L�)

=
1

4
(L+ L�) (L� L�)

=
1

4

�
L2 � (L�)2 + L�L� LL�

�
;

CB =
1

4
(L� L�) (L+ L�)

=
1

4

�
L2 � (L�)2 � L�L+ LL�

�
:

So BC = CB if and only if L�L�LL� = �L�L+LL� which is the same as saying
that LL� = L�L: �

We also need a general result about invariant subspaces.

Lemma 21. Let L : V ! V be an operator on a �nite dimensional inner product
space. If M � V is an L and L� invariant subspace, then M? is also L and L�

invariant. In particular.
(LjM?)

�
= L�jM? :

Proof. Let x 2M and y 2M?: We have to show that

(xjL (y)) = 0;

(xjL� (y)) = 0:

For the �rst identity use that

(xjL (y)) = (L� (x) jy) = 0

since L� (x) 2M: Similarly for the second that

(xjL� (y)) = (L (x) jy) = 0

since L (x) 2M: �

We are now ready to prove the spectral theorem for normal operators.
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Theorem 35. (The Spectral Theorem for Normal Operators) Let L : V ! V be
a normal operator on a complex inner product space, then there is an orthonormal
basis e1; :::; en of eigenvectors, i.e., L (e1) = �1e1; :::; L (en) = �nen:

Proof. As with the spectral theorem the proof depends on showing that we
can �nd an eigenvalue and that the orthogonal complement to an eigenvalue is
invariant.

Rather than appealing to the fundamental theorem of algebra in order to �nd
an eigenvalue for L we shall use what we know about self-adjoint operators. This
has the advantage of also yielding a proof that works in the real case (see �Real
Forms� below). First decompose L = B + iC; where B and C are self-adjoint
and then use the spectral theorem to �nd � 2 R such that ker (B � �1V ) 6= f0g.
Next note that since B � iC = iC � B it follows that BC = CB. Therefore, if
x 2 ker (B � �1V ) ; then

(B � �1V ) (C (x)) = BC (x)� �C (x)
= CB (x)� C (�x)
= C ((B � �1V ) (x))
= 0:

Thus C : ker (B � �1V ) ! ker (B � �1V ) : Using that C and hence also its re-
striction to ker (B � �1V ) are self-adjoint we can �nd x 2 ker (B � �1V ) so that
C (x) = �x: This means that

L (x) = B (x) + iC (x)

= �x+ i�x

= (�+ i�)x:

Hence we have found an eigenvalue � + i� for L with a corresponding eigenvector
x. We see in addition that

L� (x) = B (x)� iC (x)
= (�� i�)x:

Thus span fxg is both L and L� invariant. The previous lemma then shows that
M = (span fxg)? is also L and L� invariant. Hence (LjM )� = L�jM showing that
LjM :M !M is also normal. We can then use induction as in the spectral theorem
to �nish the proof. �

As an immediate consequence we get a result for unitary operators.

Theorem 36. (The Spectral Theorem for Unitary Operators) Let L : V ! V
be unitary, then there is an orthonormal basis e1; :::; en such that L (e1) = ei�1e1;
:::; L (en) = ei�nen; where �1; :::; �n 2 R:

We also have the more abstract form of the spectral theorem.

Theorem 37. Let L : V ! V be a normal operator on a complex �nite dimen-
sional inner product space and �1; :::; �k the distinct eigenvalues for L: Then

1V = projker(L��11V )+ � � �+ projker(L��k1V )
and

L = �1 projker(L��11V )+ � � �+ �k projker(L��k1V ) :
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Let us see what happens in some examples.

Example 85. Let

L =

�
� �
�� �

�
; �; � 2 R

then L is normal. When � = 0 it is skew-adjoint, when � = 0 it is self-adjoint and
when �2+�2 = 1 it is an orthogonal transformation. The decomposition L = B+iC
looks like �

� �
�� �

�
=

�
� 0
0 �

�
+ i

�
0 �i�
i� 0

�
Here �

� 0
0 �

�
has � as an eigenvalue and �

0 �i�
i� 0

�
has �� as eigenvalues. Thus L has eigenvalues (�� i�) :

Example 86. 24 0 1 0
�1 0 0
0 0 1

35
is normal and has 1 as an eigenvalue. We are then reduced to looking at�

0 1
�1 0

�
which has �i as eigenvalues.

4.1. Exercises.

(1) Consider LA (X) = AX andRA (X) = XA as linear operators onMatn�n (C) :
What conditions do you need on A in order for these maps to be normal?

(2) Assume that L : V ! V is normal and that p 2 F [t] : Show that p (L) is
also normal.

(3) Assume that L : V ! V is normal. Without using the spectral theorem
show
(a) ker (L) = ker (L�) :
(b) ker (L� �1V ) = ker

�
L� � ��1V

�
.

(c) im (L) = im (L�) :
(d) (ker (L))? = im (L).

(4) Assume that L : V ! V is normal. Without using the spectral theorem
show
(a) ker (L) = ker

�
Lk
�
for any k � 1: Hint: Use the self-adjoint operator

K = L�L:
(b) im (L) = im

�
Lk
�
for any k � 1:

(c) ker (L� �1V ) = ker
�
(L� �1V )k

�
for any k � 1:

(d) Show that the minimal polynomial of L has no multiple roots.
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(5) (Characterization of Normal Operators) Let L : V ! V be a linear opera-
tor on a �nite dimensional inner product space. Show that L is normal if
and only if (L � EjL � E) = (L� � EjL� � E) for all orthogonal projections
E : V ! V: Hint: Use the formula

(L1jL2) =
nX
i=1

(L1 (ei) jL2 (ei))

for suitable choices of orthonormal bases e1; :::; en for V:
(6) Let L : V ! V be an operator on a �nite dimensional inner product space.

Assume that M � V is an L invariant subspace and let E : V ! V be
the orthogonal projection onto M:
(a) Justify all of the steps in the calculation:

(L� � EjL� � E) =
�
E? � L� � EjE? � L� � E

�
+ (E � L� � EjE � L� � E)

=
�
E? � L� � EjE? � L� � E

�
+ (E � L � EjE � L � E)

=
�
E? � L� � EjE? � L� � E

�
+ (L � EjL � E) :

Hint: Use the result that E� = E from �Orthogonal Projections
Redux�and that L (M) �M implies E � L � E = L � E.

(b) If L is normal use the previous exercise to conclude that M is L�

invariant and M? is L invariant.
(7) (Characterization of Normal Operators) Let L : V ! V be a linear map on

a �nite dimensional inner product space. Assume that L has the property
that all L invariant subspaces are also L� invariant.
(a) Show that L is completely reducible.
(b) Show that the matrix representation with respect to an orthonormal

basis is diagonalizable when viewed as complex matrix.
(c) Show that L is normal.

(8) Assume that L : V ! V satis�es L�L = �1V ; for some � 2 C: Show that
L is normal.

(9) Show that if a projection is normal then it is an orthogonal projection.
(10) If L : V ! V is normal and p 2 F [t] ; then p (L) is also normal and if

F = C then

p (L) = p (�1) projker(L��11V )+ � � �+ p (�k) projker(L��k1V ) :

(11) Let L;K : V ! V be normal. Show by example that neither L +K nor
LK need be normal.

(12) Let A be an upper triangular matrix. Show that A is normal if and only
if it is diagonal. Hint: Compute and compare the diagonal entries in AA�

and A�A.
(13) (Characterization of Normal Operators) Let L : V ! V be an operator on

a �nite dimensional complex inner product space. Show that L is normal
if and only if L� = p (L) for some polynomial p:

(14) (Characterization of Normal Operators) Let L : V ! V be an operator on
a �nite dimensional complex inner product space. Show that L is normal
if and only if L� = LU for some unitary operator U : V ! V:

(15) Let L : V ! V be normal on a �nite dimensional complex inner product
space. Show that L = K2 for some normal operator K:
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(16) Give the canonical form for the linear maps that are both self-adjoint and
unitary.

(17) Give the canonical form for the linear maps that are both skew-adjoint
and unitary.

5. Unitary Equivalence

In the special case where V = Fn the spectral theorem can be rephrased in
terms of change of basis. Recall from �Matrix Representations Redux�in chapter
1 that if we pick a di¤erent basis x1; :::; xn for Fn; then the matrix representations
for a linear map represented by A in the standard basis and B in the new basis are
related by

A =
�
x1 � � � xn

�
B
�
x1 � � � xn

��1
:

In case x1; :::; xn is an orthonormal basis this reduces to

A =
�
x1 � � � xn

�
B
�
x1 � � � xn

��
;

where
�
x1 � � � xn

�
is a unitary or orthogonal operator.

Two n� n matrices A and B are said to be unitarily equivalent if A = UBU�,
where U 2 Un, i.e., U is an n � n matrix such that U�U = UU� = 1Fn : In case
U 2 On � Un we also say that the matrices are orthogonally equivalent.

The results from the previous two sections can now be paraphrased in the
following way.

Corollary 31. (1) A normal n � n matrix is unitarily equivalent to a
diagonal matrix.

(2) A self-adjoint n�n matrix is unitarily or orthogonally equivalent to a real
diagonal matrix.

(3) A skew-adjoint n� n matrix is unitarily equivalent to a purely imaginary
diagonal matrix.

(4) A unitary n�n matrix is unitarily equivalent to a diagonal matrix whose
diagonal elements are unit scalars.

Using the group properties of unitary matrices one can easily show the next
two results.

Proposition 28. If A and B are unitarily equivalent, then
(1) A is normal if and only if B is normal.
(2) A is self-adjoint if and only if B is self-adjoint.
(3) A is skew-adjoint if and only if B is skew-adjoint.
(4) A is unitary if and only if B is unitary.

In addition to these results we see that the spectral theorem for normal oper-
ators implies:

Corollary 32. Two normal operators are unitarily equivalent if and only if
they have the same eigenvalues (counted with multiplicities).

Example 87. The Pauli matrices are de�ned by�
0 1
1 0

�
;

�
1 0
0 �1

�
;

�
0 �i
i 0

�
:

They are all self-adjoint and unitary. Moreover, all have eigenvalues �1 so they
are all unitarily equivalent.
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Example 88. If we multiply the Pauli matrices by i we get three skew-adjoint
and unitary matrices with eigenvalues �i :�

0 1
�1 0

�
;

�
i 0
0 �i

�
;

�
0 i
i 0

�
that are also all unitarily equivalent. The 8 matrices

�
�
1 0
0 1

�
;�
�
i 0
0 �i

�
;�
�
0 1
�1 0

�
;�
�
0 i
i 0

�
form a group that corresponds to the quaternions �1;�i;�j;�k:

Example 89. �
1 1
0 2

�
;

�
1 0
0 2

�
are not unitarily equivalent as the �rst is not normal while the second is normal.
Note however that both are diagonalizable with the same eigenvalues.

5.1. Exercises.
(1) Decide which of the following matrices are unitarily equivalent

A =

�
1 1
1 1

�
;

B =

�
2 2
0 0

�
;

C =

�
2 0
0 0

�
;

D =

�
1 �i
i 1

�
:

(2) Decide which of the following matrices are unitarily equivalent

A =

24 i 0 0
0 1 0
0 0 1

35 ;
B =

24 1 �1 0
i i 1
0 1 1

35 ;
C =

24 1 0 0
1 i 1
0 0 1

35 ;
D =

24 1 + i � 1p
2
� i 1p

2
0

1p
2
+ i 1p

2
0 0

0 0 1

35 :
(3) Assume that A;B 2 Matn�n (C) are unitarily equivalent. Show that if A

has a square root, i.e., A = C2 for some C 2 Matn�n (C) ; then also B
has a square root.

(4) Assume that A;B 2 Matn�n (C) are unitarily equivalent. Show that if A
is positive, i.e., A is self-adjoint and has positive eigenvalues, then B is
also positive.
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(5) Assume that A 2 Matn�n (C) is normal. Show that A is unitarily equiv-
alent to A� if and only if A is self-adjoint.

6. Real Forms

In this section we are going to explain the canonical forms for normal real linear
operators that are not necessarily diagonalizable.

The idea is to follow the proof of the spectral theorem for complex normal
operators. Thus we use induction on dimension to obtain the desired canonical
forms. To get the induction going we decompose L = B + C; where BC = CB;
B is self-adjoint and C is skew-adjoint. The spectral theorem can be applied to
B and we observe that the eigenspaces for B are C-invariant, since BC = CB:
Unless B = �1V we can therefore �nd a nontrivial orthogonal decomposition of
V that reduces L: In case B = �1V all subspaces of V are B-invariant. Thus we
use C to �nd invariant subspaces for L. To �nd such subspaces observe that C2 is
self-adjoint and select an eigenvector/value pair C2 (x) = �x. Since C maps x to
C (x) and C (x) to C2 (x) = �x the subspace span fx;C (x)g is invariant. If this
subspace is 1-dimensional x is also an eigenvector for C; otherwise the subspace
is 2-dimensional. All in all this shows that V can be decomposed into 1 and 2-
dimensional subspaces that are invariant under B and C: As these subspaces are
contained in the eigenspaces for B we only need to �gure out how C acts on them.
In the 1-dimensional case it is spanned by an eigenvector C: So the only case left
to study is when C : M ! M is skew-adjoint and M is 2-dimensional with no
non-trivial invariant subspaces. In this case we just select a unit vector x 2M and
note that C (x) 6= 0 as x would otherwise span a 1-dimensional invariant subspace.
In addition z and C (z) are always perpendicular as

(C (z) jz) = � (zjC (z))
= � (C (z) jz) :

In particular, x and C (x) = kC (x)k form an orthonormal basis for M: In this basis
the matrix representation for C ish

C (x) C
�

C(x)
kC(x)k

� i
=
h
x C(x)

kC(x)k

i � 0 

kC (x)k 0

�

as C
�

C(x)
kC(x)k

�
is perpendicular to C (x) and hence a multiple of x: Finally we get

that 
 = �kC (x)k since the matrix has to be skew-symmetric.
This analysis shows what the canonical form for a normal real operator is.

Theorem 38. (The Canonical Form for Real Normal Operators) Let L : V !
V be a normal operator, then we can �nd an orthonormal basis e1; :::; ek; x1; y1; :::;
xl; yl where k + 2l = n and

L (ei) = �iei;

L (xj) = �jxj + �jyj ;

L (yj) = ��jxj + �jyj
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and �i; �j ; �j 2 R: Thus L has the matrix representation266666666666666664

�1 � � � 0 0 0 � � � � � � 0 0
...

. . .
...

...
...

0 � � � �k 0 0 � � �

0 � � � 0 �1 ��1 0 � � �
...

0 � � � 0 �1 �1 0 � � �

0 0
. . .

...
. . . 0 0
0 �l ��l

0 � � � 0 �l �l

377777777777777775
with respect to the basis e1; :::; ek; x1; y1; :::; xl; yl:

This yields two corollaries for skew-adjoint and orthogonal maps.

Corollary 33. (The Canonical Form for Real Skew-adjoint Operators) Let
L : V ! V be a skew-adjoint operator, then we can �nd an orthonormal basis e1; :::;
ek; x1; y1; :::; xl; yl where k + 2l = n and

L (ei) = 0;

L (xj) = �jyj ;

L (yj) = ��jxj

and �j 2 R: Thus L has the matrix representation266666666666666664

0 � � � 0 0 0 � � � � � � 0 0
...
. . .

...
...

...
0 � � � 0 0 0 � � �

0 � � � 0 0 ��1 0 � � �
...

0 � � � 0 �1 0 0 � � �

0 0
. . .

...
. . . 0 0
0 0 ��l

0 � � � 0 �l 0

377777777777777775
with respect to the basis e1; :::; ek; x1; y1; :::; xl; yl:

Corollary 34. (The Canonical Form for Orthogonal Operators) Let O : V !
V be an orthogonal operator, then we can �nd an orthonormal basis e1; :::; ek; x1;
y1; :::; xl; yl where k + 2l = n and

O (ei) = �ei;
O (xj) = cos (�j)xj + sin (�j) yj ;

O (yj) = � sin (�j)xj + cos (�j) yj
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and �i; �j ; �j 2 R: Thus L has the matrix representation

266666666666666664

�1 � � � 0 0 0 � � � � � � 0 0
...

. . .
...

...
...

0 � � � �1 0 0 � � �

0 � � � 0 cos (�1) � sin (�1) 0 � � �
...

0 � � � 0 sin (�1) cos (�1) 0 � � �

0 0
. . .

...
. . . 0 0
0 cos (�l) � sin (�l)

0 � � � 0 sin (�l) cos (�l)

377777777777777775
with respect to the basis e1; :::; ek; x1; y1; :::; xl; yl:

Proof. We just need to justify the speci�c form of the eigenvalues. We know
that as a unitary operator all the eigenvalues look like ei�: If they are real they
must therefore be �1: Otherwise we use Euler�s formula ei� = cos � + i sin � to get
the desired form. �

Note that we can arti�cially group some of the matrices in the decomposition
of the orthogonal operators by using

�
1 0
0 1

�
=

�
cos 0 � sin 0
sin 0 cos 0

�
;

�
�1 0
0 �1

�
=

�
cos� � sin�
sin� cos�

�
By paring o¤ as many eigenvectors for �1 as possible we then obtain.

Corollary 35. Let O : R2n ! R2n be an orthogonal operator, then we can
�nd an orthonormal basis where L has one of the following two types of the matrix
representations

Type I

2666666664

cos (�1) � sin (�1) 0 � � � 0 0
sin (�1) cos (�1) 0 � � � 0 0

0 0
. . .

...
...

. . . 0 0
0 0 0 cos (�n) � sin (�n)
0 0 0 sin (�n) cos (�n)

3777777775
;
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Type II266666666666664

�1 0 0 0 � � � 0 0
0 1 0 0 � � � 0 0

0 0 cos (�1) � sin (�1) 0 � � �
...

0 0 sin (�1) cos (�1) 0 � � �

0 0
. . .

...
...

. . . 0 0
0 0 0 cos (�n�1) � sin (�n�1)
0 0 � � � 0 sin (�n�1) cos (�n�1)

377777777777775
:

Corollary 36. Let O : R2n+1 ! R2n+1 be an orthogonal operator, then we
can �nd an orthonormal basis where L has one of the following two the matrix
representations

Type I 2666666666664

1 0 0 0 � � � 0 0

0 cos (�1) � sin (�1) 0 � � �
...

0 sin (�1) cos (�1) 0 � � �

0 0 0
. . .

...
. . . 0 0

0 0 cos (�n) � sin (�n)
0 � � � 0 sin (�n) cos (�n)

3777777777775
Type II 2666666666664

�1 0 0 0 � � � 0 0

0 cos (�1) � sin (�1) 0 � � �
...

0 sin (�1) cos (�1) 0 � � �

0 0 0
. . .

...
. . . 0 0

0 0 cos (�n) � sin (�n)
0 � � � 0 sin (�n) cos (�n)

3777777777775
:

Like with unitary equivalence we also have the concept of orthogonal equiva-
lence. One can with the appropriate modi�cations prove similar results about when
matrices are orthogonally equivalent. The above results apparently give us the sim-
plest type of matrix that real normal, skew-adjoint, and orthogonal operators are
orthogonally equivalent to.

Note that type I operators have the property that �1 has even multiplicity,
while for type II �1 has odd multiplicity. In particular we note that type I is the
same as saying that the determinant is 1 while type II means that the determinant
is -1. The collection of orthogonal transformations of type I is denoted SOn. This
set is a subgroup of On; i.e., if A;B 2 SOn; then AB 2 SOn: This is not obvious
given what we know now, but the proof is quite simple using determinants.
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6.1. Exercises.
(1) Explain what the canonical form is for real linear maps that are both

orthogonal and skew-adjoint.
(2) Let L : V ! V be orthogonal on a real inner product space and assume

that dim (ker (L+ 1V )) is even. Show that L = K2 for some orthogonal
K:

(3) Use the canonical forms to show
(a) If U 2 Un; then U = exp (A) where A is skew-adjoint.
(b) If O 2 On is of type I, then O = exp (A) where A is skew-symmetric.

(4) Let L : V ! V be skew-adjoint on a real inner product space. Show that
L = K2 for some K: Can you do this with a skew-adjoint K?

(5) Let A 2 On. Show that the following conditions are equivalent:
(a) A has type I.
(b) The product of the real eigenvalues is 1.
(c) The product of all real and complex eigenvalues is 1.
(d) dim (ker (L+ 1Rn)) is even.
(e) �A (t) = tn + � � �+ a1t+ (�1)n ; i.e., the constant term is (�1)n :

(6) Let A 2 Matn�n (R) satisfy AO = OA for all O 2 SOn:
(a) If n = 2; then

A =

�
� ��
� �

�
:

(b) If n � 3; then A = �1Rn :
(7) Let L : R3 ! R3 be skew-symmetric.

(a) Show that there is a unique vector w 2 R3 such that L (x) = w � x:
w is known as the Darboux vector for L:

(b) Show that the assignment L ! w gives a linear isomorphism from
skew-symmetric 3� 3 matrices to R3:

(c) Show that if L1 (x) = w1 � x and L2 (x) = w2 � x; then the commu-
tator

[L1; L2] = L1 � L2 � L2 � L1
satis�es

[L1; L2] (x) = (w1 � w2)� x
Hint: This corresponds to the Jacobi identity:

(x� y)� z + (z � x)� y + (y � z)� x = 0:
(d) Show that

L (x) = w2 (w1jx)� w1 (w2jx)
is skew-symmetric and that

(w1 � w2)� x = w2 (w1jx)� w1 (w2jx) :
(e) Conclude that all skew-symmetric L : R3 ! R3 are of the form

L (x) = w2 (w1jx)� w1 (w2jx) :
(8) For u1; u2 2 Rn.

(a) Show that

L (x) = (u1 ^ u2) (x) = (u1jx)u2 � (u2jx)u1
de�nes a skew-symmetric operator.
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(b) Show that:

u1 ^ u2 = �u2 ^ u1
(�u1 + �v1) ^ u2 = � (u1 ^ u2) + � (v1 ^ u2)

(c) Show Bianchi�s identity: For all x; y; z 2 Rn we have:
(x ^ y) (z) + (z ^ x) (y) + (y ^ z) (x) = 0:

(d) When n � 4 show that not all skew-symmetric L : Rn ! Rn are of
the form L (x) = u1 ^u2: Hint: Let u1; :::; u4 be linearly independent
and consider

L = u1 ^ u2 + u3 ^ u4:
(e) Show that the skew-symmetric operators ei ^ ej ; where i < j; form a

basis for the skew-symmetric operators.

7. Orthogonal Transformations

In this section we are going to try to get a better grasp on orthogonal trans-
formations.

We start by specializing the above canonical forms for orthogonal transforma-
tions to the two situations where things can be visualized, namely, in dimensions 2
and 3:

Corollary 37. Any orthogonal operator O : R2 ! R2 has one of the following
two forms in the standard basis:

Either it is a rotation by � and is of the form

Type I:
�
cos (�) � sin (�)
sin (�) cos (�)

�
;

or it is a re�ection in the line spanned by (cos�; sin�) and has the form

Type II:
�
cos (2�) sin (2�)
sin (2�) � cos (2�)

�
:

Moreover, O is a rotation if �O (t) = t2 � (2 cos �) t + 1 and � is given by cos � =
1
2 trO; while O is a re�ection if trO = 0 and �O (t) = t2 � 1:

Proof. We know that there is an orthonormal basis x1; x2 that puts O into
one of the two forms �

cos (�) � sin (�)
sin (�) cos (�)

�
;

�
1 0
0 �1

�
:

We can write

x1 =

�
cos (�)
sin (�)

�
; x2 = �

�
� sin (�)
cos (�)

�
The sign on x2 can have an e¤ect on the matrix representation as we shall see. In
the case of the rotation it means a sign change in the angle, in the re�ection case
it doesn�t change the form at all.

To �nd the form of the matrix in the usual basis we use the change of basis
formula for matrix representations. Before doing this let us note that the law of
exponents:

exp (i (� + �)) = exp (i�) exp (i�)
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tells us that the corresponding real 2� 2 matrices satisfy:�
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (�) � sin (�)
sin (�) cos (�)

�
=

�
cos (�+ �) � sin (�+ �)
sin (�+ �) cos (�+ �)

�
Thus

O =

�
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (�) sin (�)
� sin (�) cos (�)

�
=

�
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (��) � sin (��)
sin (��) cos (��)

�
=

�
cos (�) � sin (�)
sin (�) cos (�)

�
as expected. If x2 is changed to �x2 we have

O =

�
cos (�) sin (�)
sin (�) � cos (�)

� �
cos (�) � sin (�)
sin (�) cos (�)

� �
cos (�) sin (�)
sin (�) � cos (�)

�
=

�
cos (�) sin (�)
sin (�) � cos (�)

� �
cos (��) sin (��)
� sin (��) cos (��)

� �
cos (�) sin (�)
sin (�) � cos (�)

�
=

�
cos (�� �) sin (�� �)
sin (�� �) � cos (�� �)

� �
cos (��) � sin (��)
� sin (��) � cos (��)

�
=

�
cos (��) � sin (��)
sin (��) cos (��)

�
Finally the re�ection has the form

O =

�
cos (�) � sin (�)
sin (�) cos (�)

� �
1 0
0 �1

� �
cos (�) sin (�)
� sin (�) cos (�)

�
=

�
cos (�) sin (�)
sin (�) � cos (�)

� �
cos (�) sin (�)
� sin (�) cos (�)

�
=

�
cos (2�) sin (2�)
sin (2�) � cos (2�)

�
:

�

Note that there is clearly an ambiguity in what it should mean to be a rotation
by � as either of the two matrices�

cos (��) � sin (��)
sin (��) cos (��)

�
describe such a rotation. What is more, the same orthogonal transformation can
have di¤erent canonical forms depending on what basis we choose as we just saw
in the proof of the above theorem. Unfortunately it isn�t possible to sort this
out without being very careful about the choice of basis, speci�cally one needs to
additional concept of orientation which in turn uses determinants.

We now go to the three dimensional situation.

Corollary 38. Any orthogonal operator O : R3 ! R3 is either
Type I a rotation in the plane that is perpendicular to the line representing the

+1 eigenspace, or
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Type II it is a rotation in the plane that is perpendicular to the �1 eigenspace
followed by a re�ection in that plane, corresponding to multiplying by �1
in the �1 eigenspace.

As in the 2 dimensional situation we can also discover which case we are in by
calculating the characteristic polynomial. For a rotation O in an axis we have

�O (t) = (t� 1)
�
t2 � (2 cos �) t+ 1

�
= t3 � (1 + 2 cos �) t2 + (1 + 2 cos �) t� 1
= t3 � (trO) t2 + (trO) t� 1;

while the case involving a re�ection

�O (t) = (t+ 1)
�
t2 � (2 cos �) t+ 1

�
= t3 � (�1 + 2 cos �) t2 � (�1 + 2 cos �) t+ 1
= t3 � (trO) t2 � (trO) t+ 1:

Example 90. Imagine a cube that is centered at the origin and so that the edges
and sides are parallel to coordinate axes and planes. We note that all of the orthog-
onal transformations that either re�ect in a coordinate plane or form 90�; 180�; 270�

rotations around the coordinate axes are symmetries of the cube. Thus the cube is
mapped to itself via each of these isometries. In fact, the collection of all isometries
that preserve the cube in this fashion is a (�nite) group. It is evidently a subgroup
of O3: There are more symmetries than those already mentioned, namely, if we pick
two antipodal vertices then we can rotate the cube into itself by 120� and 240� rota-
tions around the line going through these two points. What is even more surprising
is perhaps that these rotations can be obtained by composing the already mentioned
90� rotations. To see this let

Ox =

24 1 0 0
0 0 �1
0 1 0

35 ; Oy =
24 0 0 �1
0 1 0
1 0 0

35
be 90� rotations around the x- and y-axes respectively. Then

OxOy =

24 1 0 0
0 0 �1
0 1 0

3524 0 0 �1
0 1 0
1 0 0

35 =
24 0 0 �1
�1 0 0
0 1 0

35
OyOx =

24 0 0 �1
0 1 0
1 0 0

3524 1 0 0
0 0 �1
0 1 0

35 =
24 0 �1 0
0 0 �1
1 0 0

35
so we see that these two rotations do not commute. We now compute the (complex)
eigenvalues via the characteristic polynomials in order to �gure out what these new
isometries look like. Since both matrices have zero trace they have characteristic
polynomial

� (t) = t3 � 1:
Thus they describe rotations where

tr (O) = 1 + 2 cos (�) = 0; or

� = �2�
3
:
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around the axis that corresponds to the 1 eigenvector. For OxOy we have that
(1;�1;�1) is an eigenvector for 1; while for OyOx we have (�1; 1;�1). These
two eigenvectors describe the directions for two di¤erent diagonals in the cube.
Completing, say, (1;�1;�1) to an orthonormal basis for R3; then tells us that

OxOy =

264
1p
3

1p
2

1p
6

�1p
3

1p
2

�1p
6

�1p
3

0 2p
6

375
24 1 0 0
0 cos

�
� 2�3

�
� sin

�
� 2�3

�
0 sin

�
� 2�3

�
cos
�
� 2�3

�
35
264

1p
3

�1p
3

�1p
3

1p
2

1p
2

0
1p
6

�1p
6

2p
6

375
=

264
1p
3

1p
2

1p
6

�1p
3

1p
2

�1p
6

�1p
3

0 2p
6

375
264 1 0 0

0 � 12 �
p
3
2

0 �
p
3
2 � 12

375
264

1p
3

�1p
3

�1p
3

1p
2

1p
2

0
1p
6

�1p
6

2p
6

375
=

264
1p
3

1p
2

1p
6

�1p
3

1p
2

�1p
6

�1p
3

0 2p
6

375
264 1 0 0

0 � 12 �
p
3
2

0
p
3
2 � 12

375
264

1p
3

�1p
3

�1p
3

1p
2

1p
2

0
1p
6

�1p
6

2p
6

375
The fact that we pick + rather than � depends on our orthonormal basis as we can
see by changing the basis by a sign in the last column:

OxOy =

264
1p
3

1p
2

�1p
6

�1p
3

1p
2

1p
6

�1p
3

0 �2p
6

375
264 1 0 0

0 � 12
p
3
2

0 �
p
3
2 � 12

375
264

1p
3

�1p
3

�1p
3

1p
2

1p
2

0
�1p
6

1p
6

�2p
6

375
We are now ready to discuss how the two types of orthogonal transformations

interact with each other when multiplied. Let us start with the 2 dimensional
situation. One can directly verify that�

cos �1 � sin �1
sin �1 cos �1

� �
cos �2 � sin �2
sin �2 cos �2

�
=

�
cos (�1 + �2) � sin (�1 + �2)
sin (�1 + �2) cos (�1 + �2)

�
;

�
cos � � sin �
sin � cos �

� �
cos� sin�
sin� � cos�

�
=

�
cos (� + �) sin (� + �)
sin (� + �) � cos (� + �)

�
;

�
cos� sin�
sin� � cos�

� �
cos � � sin �
sin � cos �

�
=

�
cos (�� �) sin (�� �)
sin (�� �) � cos (�� �)

�
;

�
cos�1 sin�1
sin�1 � cos�1

� �
cos�2 sin�2
sin�2 � cos�2

�
=

�
cos (�1 � �2) � sin (�1 � �2)
sin (�1 � �2) cos (�1 � �2)

�
:

Thus we see that if the transformations are of the same type their product has
type I, while if they have di¤erent type their product has type II. This is analogous
to multiplying positive and negative numbers. This result actually holds in all
dimensions and has a very simple proof using determinants. Euler proved this
result in the 3-dimensional case without using determinants. What we are going to
look into here is the observation that any rotation (type I) in O2 is a product of
two re�ections. More speci�cally if � = �1 � �2; then the above calculation shows
that �

cos � � sin �
sin � cos �

�
=

�
cos�1 sin�1
sin�1 � cos�1

� �
cos�2 sin�2
sin�2 � cos�2

�
:
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To pave the way for a higher dimensional analogue of this we de�ne A 2 On to
be a re�ection if it has the canonical form

A = O

26664
�1 0 0
0 1

. . .
0 1

37775O�:
This implies that BAB� is also a re�ection for all B 2 On: To get a better picture of
what A does we note that the �1 eigenvector gives the re�ection in the hyperplane
spanned by the n� 1 dimensional +1 eigenspace. If z is a unit eigenvector for �1;
then we can write A in the following way

A (x) = Rz (x) = x� 2 (xjz) z:
To see why this is true �rst note that if x is an eigenvector for +1; then it is
perpendicular to z and hence

x� 2 (xjz) z = x

In case x = z we have

z � 2 (zjz) z = z � 2z
= �z

as desired. We can now prove an interesting and important lemma.

Lemma 22. (E. Cartan) Let A 2 On: If A has type I, then A is a product of
an even number of re�ections, while if A has type II, then it is a product of an odd
number of re�ections.

Proof. The canonical form for A can be expressed as follows:

A = OI�R1 � � �RlO�;
where O is the orthogonal change of basis matrix, each Ri corresponds to a rotation
on a two dimensional subspace Mi and

I� =

26664
�1 0 0
0 1

. . .
0 1

37775
where + is used for type I and � is used for type II. The above two dimensional
construction shows that each rotation is a product of two re�ections on Mi. If
we extend these two dimensional re�ections to be the identity on M?

i ; then they
become re�ections on the whole space. Thus we have

A = OI� (A1B1) � � � (AlBl)O�;
where I� is either the identity or a re�ection and A1; B1; :::; Al; Bl are all re�ections.
Finally

A = OI� (A1B1) � � � (AlBl)O�

= (OI�O
�) (OA1O

�) (OB1O
�) � � � (OAlO�) (OBlO�) :

This proves the claim. �
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The converse to this lemma is also true, namely, that any even number of
re�ection compose to a type I orthogonal transformation, while an odd numbers
yields one of type II. This proof of this fact is very simple if one uses determinents.

7.1. Exercises.
(1) Decide the type and what the rotation and/or line of re�ection is for each

the matrices "
1
2

p
3
2

�
p
3
2

1
2

#
;"

1
2

p
3
2p

3
2 � 12

#
:

(2) Decide on the type, �1 eigenvector and possible rotation angles on the
orthogonal complement for the �1 eigenvector for the matrices:24 � 13 � 23 � 23

� 23 � 13
2
3

� 23
2
3 � 13

35 ;
24 0 0 1
0 �1 0
1 0 0

35 ;
24 2

3 � 23
1
3

� 23 � 13
2
3

1
3

2
3

2
3

35 ;
24 1

3
2
3

2
3

2
3 � 23

1
3

2
3

1
3 � 23

35 :
(3) Write the matrices from 1 and 2 as products of re�ections.
(4) Let O 2 O3 and assume we have u 2 R3 such that for all x 2 R3

1

2

�
O �Ot

�
(x) = u� x:

(a) Show that u determines the axis of rotation by showing that: O (u) =
�u.

(b) Show that the rotation is determined by jsin �j = juj :
(c) Show that for any O 2 O3 we can �nd u 2 R3 such that the above

formula holds.
(5) (Euler) De�ne the rotations around the three coordinate axes in R3 by

Ox (�) =

24 1 0 0
0 cos� � sin�
0 sin� cos�

35 ;
Oy (�) =

24 cos� 0 � sin�
0 1 0

sin� 0 cos�

35 ;
Oz (
) =

24 cos 
 � sin 
 0
sin 
 cos 
 0
0 0 1

35 :
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(a) Show that any O 2 SO (3) is of the form O = Ox (�)Oy (�)Oz (
) :
The angles �; �; 
 are called the Euler angles for O: Hint:

Ox (�)Oy (�)Oz (
) =

24 cos� cos 
 � cos� sin 
 � sin�
� sin� cos�
cos� sin�

35
(b) Show that Ox (�)Oy (�)Oz (
) 2 SO (3) for all �; �; 
:
(c) Show that if O1; O2 2 SO (3) then also O1O2 2 SO (3) :

(6) Find the matrix representations with respect to the canonical basis for
R3 for all of the orthogonal matrices that describe a rotation by � in
span f(1; 1; 0) ; (1; 2; 1)g :

(7) Let z 2 Rn be a unit vector and
Rz (x) = x� 2 (xjz) z

the re�ection in the hyperplane perpendicular to z:
(a) Show that

Rz = R�z;

(Rz)
�1

= Rz:

(b) If y; z 2 Rn are linearly independent unit vectors, then show that
RyRz 2 On is a rotation on M = span fy; zg and the identity on
M?:

(c) Show that the angle � of rotation is given by the relationship

cos � = �1 + 2 j(yjz)j2

= cos (2 ) ;

where (yjz) = cos ( ) :
(8) Let �n denote the group of permutations. These are the bijective maps

from f1; 2; :::; ng to itself. The group product is composition and inverses
are the inverse maps. Show that the map de�ned by sending � 2 �n to
the permutation matrix O� de�ned by O� (ei) = e�(i) is a group homo-
morphism

�n ! On;

i.e., show O� 2 On and O��� = O� � O� . (See also the last example in
�Linear Maps as Matrices�).

(9) Let A 2 O4:
(a) Show that we can �nd a 2 dimensional subspace M � R4 such that

M and M? are both invariant under A:
(b) Show that we can choose M so that AjM? is rotation and AjM is a

rotation precisely when A is type I while AjM is a re�ection when A
has type II.

(c) Show that if A has type I then

�A (t) = t4 � 2 (cos (�1) + cos (�2)) t3

+(2 + 4 cos (�1) cos (�2)) t
2 � 2 (cos (�1) + cos (�2)) t+ 1

= t4 � (tr (A)) t3 + (2 + tr (AjM ) tr (AjM?)) t2 � (tr (A)) t+ 1;
where tr (A) = tr (AjM ) + tr (AjM?) :
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(d) Show that if A has type II then

�A (t) = t4 � (2 cos (�)) t3 + (2 cos �) t� 1
= t4 � (tr (A)) t3 + (tr (A)) t� 1
= t4 � (tr (AjM?)) t3 + (tr (AjM?)) t� 1:

8. Triangulability

There is a result that gives a simple form for general complex linear maps in an
orthonormal basis. The result is a sort of consolation prize for operators without
any special properties relating to the inner product structure. This triagulability
theorem gives a di¤erent proof of the Jordan-Chevalley decomposition for �The
Jordan Canonical form�to the e¤ect that a complex linear operator is the sum of
two commuting operators, one which is diagonalizable and one which is nilpotent.
In the subsequent sections on �The Singular Value Decomposition�and �The Polar
Composition� we shall see some other simpli�ed forms for general linear maps
between inner product spaces.

Theorem 39. (Schur�s Theorem) Let L : V ! V be a linear operator on a �nite
dimensional complex inner product space. It is possible to �nd an orthonormal basis
e1; :::; en such that the matrix representation [L] is upper triangular in this basis,
i.e.,

L =
�
e1 � � � en

�
[L]
�
e1 � � � en

��
=

�
e1 � � � en

�
26664
�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...
0 0 � � � �nn

37775 � e1 � � � en
��
:

Before discussing how to prove this result let us consider a few examples.

Example 91. Note that �
1 1
0 2

�
;

�
0 1
0 0

�
are both in the desired form. The former matrix is diagonalizable but not with
respect to an orthonormal basis. So within that framework we can�t improve its
canonical form. The latter matrix is not diagonalizable so there is nothing else to
discuss.

Example 92. Any 2 � 2 matrix A can be put into upper triangular form by
�nding an eigenvector e1 and then selecting e2 to be orthogonal to e1. This is
because we must have�

Ae1 Ae2
�
=
�
e1 e2

� � � �
0 


�
:

Proof. (of Schur�s theorem) Note that if we have the desired form

�
L (e1) � � � L (en)

�
=
�
e1 � � � en

�
26664
�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...
0 0 � � � �nn

37775
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then we can construct a �ag of invariant subspaces

f0g � V1 � V2 � � � � � Vn�1 � V;

where dimVk = k and L (Vk) � Vk; de�ned by Vk = span fe1; :::; ekg : Conversely
given such a �ag of subspaces we can �nd the orthonormal basis by selecting unit
vectors ek 2 Vk \ V ?k�1:

In order to exhibit such a �ag we use an induction argument along the lines
of what we did when proving the spectral theorems for self-adjoint and normal
operators. In this case the proof of Schur�s theorem is reduced to showing that
any complex linear map has an invariant subspace of dimension dimV � 1: To see
why this is true consider the adjoint L� : V ! V and select an eigenvalue/vector
pair L� (y) = �y: Then de�ne Vn�1 = y? = fx 2 V : (xjy) = 0g and note that for
x 2 Vn�1 we have

(L (x) jy) = (xjL� (y))
= (xj�y)
= � (xjy)
= 0:

Thus Vn�1 is L invariant. �

Example 93. Let

A =

24 0 0 1
1 0 0
1 1 0

35 :
To �nd the basis that puts A into upper triangular form we can always use an
eigenvalue e1 for A as the �rst vector. To use the induction we need one for A� as
well. Note however that if Ax = �x and A�y = �y then

� (xjy) = (�xjy)
= (Axjy)
= (xjA�y)
= (xj�y)
= �� (xjy) :

So x and y are perpendicular as long as � 6= ��. Having selected e1 we should then
select e3 as an eigenvector for A� where the eigenvalue is not conjugate to the one
for e1: Next we note that e?3 is invariant and contains e1: Thus we can easily �nd
e2 2 e?3 as a vector perpendicular to e1: This then gives the desired basis for A:

Now let us implement this on the original matrix. First note that 0 is not an
eigenvalue for either matrix as ker (A) = f0g = ker (A�) : This is a little unlucky of
course. Thus we must �nd � such that (A� �1C3)x = 0 has a nontrivial solution.
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This means that we should study the augmented system24 �� 0 1
1 �� 0
1 1 ��

0
0
0

35
24 1 1 ��

1 �� 0
�� 0 1

0
0
0

35
24 1 1 ��
0 ��� 1 �

0 � 1� �2

0
0
0

35
24 1 1 ��
0 � 1� �2
0 �+ 1 ��

0
0
0

35
24 1 1 ��
0 � 1� �2
0 0 ��� �+1

�

�
1� �2

� 0
0
0

35
In order to �nd a nontrivial solution to the last equation the characteristic equation

�

�
��� �+ 1

�

�
1� �2

��
= �3 � �� 1

must vanish. This is not a pretty equation to solve but we do know that it has a
solution which is real. We run into the same equation when considering A� and we
know that we can �nd yet another solution that is either complex or a di¤erent real
number. Thus we can conclude that we can put this matrix into upper triangular
form. Despite the simple nature of the matrix the upper triangular form is not very
pretty.

The theorem on triangulability evidently does not depend on our earlier the-
orems such as the spectral theorem. In fact all of those results can be re-proved
using the theorem on triangulability. The spectral theorem itself can, for instance,
be proved by simply observing that the matrix representation for a normal operator
must be normal if the basis is orthonormal. But an upper triangular matrix can
only be normal if it is diagonal.

One of the nice uses of Schur�s theorem is to linear di¤erential equations. As-
sume that we have a system L (x) = _x � Ax = b; where A 2 Matn�n (C) ; b 2 Cn:
Then �nd a basis arranged as a matrix U so that U�AU is upper triangular. If we
let x = Uy; then the system can be rewritten as U _y�AUy = b; which is equivalent
to solving

K (y) = _y � U�AUy = U�b:

Since U�AU is upper triangular it will look like26664
_y1
...
_yn�1
_yn

37775�
26664
�11 � � � �1;n�1 �1;n
...

. . .
...

...
0 � � � �n�1;n�1 �n�1;n
0 � � � 0 �nn

37775
26664

y1
...

yn�1
yn

37775 =
26664


1
...


n�1

n

37775 :
Now start by solving the last equation _yn � �nnyn = 
n and then successively
solve backwards using that we know how to solve linear equations of the form
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_z � �z = f (t) : Finally translate back to x = U�y to �nd x: Note that this also
solves any particular initial value problem x (t0) = x0 as we know how to solve each
of the systems with a �xed initial value at t0: Speci�cally _z��z = f (t) ; z (t0) = z0
has the unique solution

z (t) = z0 exp (� (t� t0))
Z t

t0

exp (�� (s� t0)) f (s) ds

= z0 exp (�t)

Z t

t0

exp (��s) f (s) ds:

Note that the procedure only uses that A is a matrix whose entries are complex
numbers. The constant b can in fact be allowed to have smooth functions as entries
without changing a single step in the construction.

We could, of course, have used the Jordan canonical form as an upper triangular
representative for A as well. The advantage of Schur�s theorem is that the transition
matrix is unitary and therefore easy to invert.

8.1. Exercises.
(1) Show that for any linear map L : V ! V on an n-dimensional vector

space, where the �eld of scalars F � C; we have trL = �1+ � � �+�n; where
�1; :::; �n are the complex roots of �L (t) counted with multiplicities. Hint:
First go to a matrix representation [L] ; then consider this as a linear map
on Cn and triangularize it.

(2) Let L : V ! V; where V is a real �nite dimensional inner product space,
and assume that �L (t) splits, i.e., all roots are real. Show that there is
an orthonormal basis in which the matrix representation for L is upper
triangular.

(3) Use Schur�s theorem to prove that if A 2 Matn�n (C) and " > 0; then we
can �nd A" 2 Matn�n (C) such that jjA�A"jj � " and the n eigenvalues
for A" are distinct. Conclude that any complex linear operator on a �nite
dimensional inner product space can be approximated by diagonalizable
operators.

(4) Let L : V ! V be a linear operator on a complex inner product space and
let p 2 C [t]. Show that � is an eigenvalue for p (L) if and only if � = p (�)
where � is an eigenvalue for L:

(5) Show that a linear operator L : V ! V on an n-dimensional inner product
space is normal if and only if

tr (L�L) = j�1j2 + � � �+ j�nj2 ;
where �1; :::; �n are the complex roots of the characteristic polynomial
�L (t) :

(6) Let L : V ! V be an invertible linear operator on an n-dimensional
complex inner product space. If �1; :::; �n are the eigenvalues for L counted
with multiplicities, then

L�1

 � Cn kLkn�1

j�1j � � � j�nj
for some constant Cn that depends only on n: Hint: If Ax = b and A is
upper triangular show that there are constants

1 = Cn;n � Cn;n�1 � � � � � Cn;1
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such that

j�kj � Cn;k
kbk kAkn�k

j�nn � � ��kkj
;

A =

26664
�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...
0 0 � � � �nn

37775 ;

x =

264 �1
...
�n

375 :
Then bound L�1 (ei) using that L

�
L�1 (ei)

�
= ei:

(7) Let A 2 Matn�n (C) and � 2 C be given and assume that there is a unit
vector x such that

kAx� �xk < "n

Cn kA� �1V kn�1
:

Show that there is an eigenvalue �0 for A such that���� �0�� < ":

Hint: Use the above exercise to conclude that if

(A� �1V ) (x) = b;

kbk <
"n

Cn kA� �1V kn�1
:

and all eigenvalues for A� �1V have absolute value � "; then kxk < 1:
(8) Let A 2 Matn�n (C) be given and assume that kA�Bk < � for some

small �:
(a) Show that all eigenvalues for A and B lie in the compact set K =
fz : jzj � kAk+ 1g :

(b) Show that if � 2 K is no closer than " to any eigenvalue for A; then


(�1V �A)�1


 < Cn
(2 kAk+ 2)n�1

"n
:

(c) Using

� =
"n

Cn (2 kAk+ 2)n�1

show that any eigenvalue for B is within " of some eigenvalue for A:
(d) Show that


(�1V �B)�1


 � Cn (2 kAk+ 2)n�1

"n

and that any eigenvalue for A is within " of an eigenvalue for B:
(9) Show directly that the solution to _z � �z = f (t) ; z (t0) = z0 is unique.

Conclude that the initial value problems for systems of di¤erential equa-
tions with constant coe¢ cients have unique solutions.

(10) Find the general solution to the system _x�Ax = b; where
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(a) A =
�
0 1
1 2

�
:

(b) A =
�
1 1
1 2

�
:

(c) A =
�
� 12

1
2

� 12
1
2

�
:

9. The Singular Value Decomposition�

Using the results we have developed so far it is possible to obtain some very nice
decompositions for general linear maps as well. First we treat the so called singular
value decomposition. Note that general linear maps L : V ! W do not have
eigenvalues. The singular values of L that we de�ne below are a good substitute
for eigenvalues.

Theorem 40. (The Singular Value Decomposition) Let L : V !W be a linear
map between �nite dimensional inner product spaces. There is an orthonormal
basis e1; :::; em for V such that (L (ei) jL (ej)) = 0 if i 6= j: Moreover, we can �nd
orthonormal bases e1; :::; em for V and f1; :::; fn for W so that

L (e1) = �1f1; :::; L (ek) = �kfk;

L (ek+1) = � � � = L (em) = 0

for some k � m: In particular,

L =
�
f1 � � � fn

�
[L]
�
e1 � � � em

��

=
�
f1 � � � fn

�
266666664

�1 0 � � �

0
. . . 0

... 0 �k 0
0 0

. . .

377777775
�
e1 � � � em

��

Proof. Use the spectral theorem on L�L : V ! V to �nd an orthonormal
basis e1; :::; em for V such that L�L (ei) = �iei: Then

(L (ei) jL (ej)) = (L�L (ei) jej) = (�ieijej) = �i�ij :

Next reorder if necessary so that �1; :::; �k 6= 0 and de�ne

fi =
L (ei)

kL (ei)k
; i = 1; :::; k:

Finally select fk+1; :::; fn so that we get an orthonormal basis for W:
In this way we see that �i = kL (ei)k : Finally we must check that

L (ek+1) = � � � = L (em) = 0:

This is because kL (ei)k2 = �i for all i: �
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The values � =
p
� where � is an eigenvalue for L�L are called the singular

values of L: We often write the decomposition of L as follows

L = U�~U�;

U =
�
f1 � � � fn

�
;

~U =
�
e1 � � � em

�
;

� =

266666664

�1 0 � � �

0
. . . 0

... 0 �k 0
0 0

. . .

377777775
:

and we generally oder the singular values �1 � � � � � �k:
The singular value decomposition gives us a nice way of studying systems Lx =

b; when L isn�t necessarily invertible. In this case L has a partial or generalized
inverse called the Moore-Penrose inverse. The construction is quite simple. Take
a linear map L : V ! W; then observe that Lj(ker(L))? : (ker (L))

? ! im (L) is an
isomorphism. Thus we can de�ne the generalized inverse Ly : W ! V in such a
way that

ker
�
Ly
�
= (im (L))

?
;

im
�
Ly
�
= (ker (L))

?
;

Lyjim(L) =
�
Lj(ker(L))? : (ker (L))

? ! im (L)
��1

:

If we have picked orthonormal bases that yield the singular value decomposition,
then

Ly (f1) = ��11 f1; :::; L
y (fk) = ��1k fk;

Ly (fk+1) = � � � = Ly (fn) = 0:

Using the singular value decomposition L = U�~U� we can also de�ne

Ly = ~U�yU�;

where

�y =

266666664

��11 0 � � �

0
. . . 0

... 0 ��1k 0
0 0

. . .

377777775
This generalized inverse can now be used to try to solve Lx = b for given b 2 W:
Before explaining how that works we list some of the important properties of the
generalized inverse.

Proposition 29. Let L : V ! W be a linear map between �nite dimensional
inner product spaces and Ly the Moore-Penrose inverse. Then

(1) (�L)y = ��1Ly if � 6= 0:
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(2)
�
Ly
�y
= L:

(3) (L�)y =
�
Ly
��
:

(4) LLy is an orthogonal projection with im
�
LLy

�
= im (L) and ker

�
LLy

�
=

ker (L�) = ker
�
Ly
�
.

(5) LyL is an orthogonal projection with im
�
LyL

�
= im (L�) = im

�
Ly
�
and

ker
�
LyL

�
= ker (L).

(6) LyLLy = Ly:
(7) LLyL = L:

Proof. All of these properties can be proven using the abstract de�nition.
Instead we shall see how the matrix representation coming from the singular value
decomposition can also be used to prove the results. Conditions 1-3 are straight-
forward to prove using that the singular value decomposition of L yields singular
value decompositions of both Ly and L�:

To prove 4 and 5 we use the matrix representation to see that

LyL = ~U�yU�U�~U�

= ~U

266666664

1 0 � � �

0
. . . 0

... 0 1 0
0 0

. . .

377777775
~U�

and similarly

LLy = U

266666664

1 0 � � �

0
. . . 0

... 0 1 0
0 0

. . .

377777775
U�

This proves that these maps are orthogonal projections as the bases are ortho-
normal. It also yields the desired properties for kernels and images.

Finally 6,7 now follow via a similar calculation using the matrix representations.
�

To solve Lx = b for given b 2W we can now use.

Corollary 39. Lx = b has a solution if and only if b = LLyb and all solutions
are given by

x = Lyb+
�
1V � LyL

�
z;

where z 2 V: Moreover the smallest solution is given by
x0 = Lyb:

In case b 6= LLyb; the best approximate solutions are given by

x = Lyb+
�
1V � LyL

�
z; z 2 V

again with
x0 = Lyb

being the smallest.
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Proof. Since LLy is the orthogonal projection onto im (L) we see that b 2
im (L) if and only if b = LLyb: This means that b = L

�
Lyb
�
so that x0 = Lyb is a

solution to the system. Next we note that
�
1V � LyL

�
is the orthogonal projection

onto (im (L�))? = ker (L). Thus all solutions are of the desired form. Finally as
Lyb 2 im (L�) the Pythagorean Theorem implies that

Lyb+ �1V � LyL� z

2 = 

Lyb

2 + 

�1V � LyL� z

2
showing that 

Lyb

2 � 

Lyb+ �1V � LyL� z

2
for all z:

The last statement is a consequence of the fact that LLyb is the element in
im (L) that is closest to b since LLy is an orthogonal projection. �

9.1. Exercises.
(1) Show that the singular decomposition of a self-adjoint operator L with

nonnegative eigenvalues looks like U�U� where the diagonal entries of �
are the eigenvalues of L:

(2) Find the singular value decompositions of24 0 1
0 1
1 0

35 and
�
0 0 1
1 1 0

�
:

(3) Find the generalized inverses to�
0 1
0 0

�
and

24 0 0 0
1 0 0
0 1 1

35 :
(4) Let L : V ! W be a linear operator between �nite dimensional inner

product spaces and �1 � � � � � �k the singular values of L: Show that the
results of the section can be rephrased as follows: There exist orthonormal
bases e1; :::; em for V and f1; :::; fn for W such that

L (x) = �1 (xje1) f1 + � � �+ �k (xjek) fk;
L� (y) = �1 (yjf1) e1 + � � �+ �k (yjfk) ek;
Ly (y) = ��11 (yjf1) e1 + � � �+ ��1k (yjfk) ek:

(5) Let L : V ! W be a linear operator on an n-dimensional inner product
space. Show that L is an isometry if and only if ker (L) = f0g and all
singular values are 1:

(6) Let L : V ! W be a linear operator between �nite dimensional inner
product spaces. Show that

kLk = �1;

where �1 is the largest singular value of L:
(7) Let L : V !W be a linear operator between �nite dimensional inner prod-

uct spaces. If there are orthonormal bases e1; :::; em for V and f1; :::; fn
for W such that L (ei) = � ifi; i � k and L (ei) = 0, i > k; then the � is
are the singular values of L:

(8) Let L : V !W be a nontrivial linear operator between �nite dimensional
inner product spaces.
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(a) If e1; :::; em is an orthonormal basis for V show that

tr (L�L) = kL (e1)k2 + � � �+ kL (em)k2 :
(b) If �1 � � � � � �k are the singular values for L show that

tr (L�L) = �21 + � � �+ �2k:

10. The Polar Decomposition�

In this section we are going to study general linear operators L : V ! V: These
can be decomposed in a manner similar to the polar coordinate decomposition of
complex numbers: z = ei� jzj :

Theorem 41. (The Polar Decomposition) Let L : V ! V be a linear operator
on an inner product space, then L =WS; where W is unitary (or orthogonal) and
S is self-adjoint with nonnegative eigenvalues. Moreover, if L is invertible then W
and S are uniquely determined by L:

Proof. The proof is similar to the construction of the singular value decom-
position. In fact we can use the singular value decomposition to prove the polar
decomposition:

L = U�~U�

= U ~U� ~U�~U�

=
�
U ~U�

��
~U�~U�

�
Thus we let

W = U ~U�;

S = ~U�~U�

ClearlyW is unitary as it is a composition of two isometries. And S is certainly self-
adjoint with nonnegative eigenvalues as we have diagonalized it with an orthonormal
basis and � has nonnegative diagonal entries.

Finally assume that L is invertible and

L =WS = ~WT

where W; ~W are unitary and S; T are self-adjoint with positive eigenvalues. Then
S and T must also be invertible and

ST�1 = ~WW�1

= ~WW �:

This implies that ST�1 is unitary. Thus�
ST�1

��1
=

�
ST�1

��
= (T �)

�1
S�

= T�1S;

and therefore

1V = T�1SST�1

= T�1S2T�1:

This means that S2 = T 2: Since both operators are self-adjoint and have nonnega-
tive eigenvalues this implies that S = T and hence ~W =W as desired. �
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There is also an L = SW decomposition, where S = U�U� and W = U ~U�.
From this it is clear that S and W need not be the same in the two decomposition
unless U = ~U in the singular value decomposition. This is equivalent to L being
normal (see also exercises).

Recall from chapter 1 that we have the general linear group Gln (F) � Matn�n (F)
of invertible n � n matrices. Further de�ne PSn (F) � Matn�n (F) as being the
self-adjoint positive matrices, i.e., the eigenvalues are positive. The polar decom-
position says that we have bijective (nonlinear) maps (i.e., one-to-one and onto
maps)

Gln (C) � Un � PSn (C) ;
Gln (R) � On � PSn (R) ;

given by A =WS  ! (W;S) : These maps are in fact homeomorphisms, i.e., both
(W;S) 7!WS and A =WS 7! (W;S) are continuous. The �rst map only involves
matrix multiplication so it is obviously continuous. That A = WS ! (W;S) is
continuous takes a little more work. Assume that Ak =WkSk and that Ak ! A =
WS 2 Gln: Then we need to show thatWk !W and Sk ! S: The space of unitary
or orthogonal operators is compact. So any subsequence of Wk has a convergent
subsequence. Now assume that Wkl ! �W; then also Skl =

�
W �
kl

�
Akl ! �W �A:

Thus A = �W
�
�W �A

�
; which implies by the uniqueness of the polar decomposition

that �W =W and Skl ! S: This means that convergent subsequences of Wk always
converge to W; this in turn implies that Wk ! W: We then conclude that also
Sk ! S as desired.

Next we note that PSn is a convex cone. This means that if A;B 2 PSn; then
also sA + tB 2 PSn for all t; s > 0: It is obvious that sA + tB is self-adjoint. To
see that all eigenvalues are positive we use that (Axjx) ; (Bxjx) > 0 for all x 6= 0 to
see that

((sA+ tB) (x) jx) = s (Axjx) + t (Bxjx) > 0:

The importance of this last observation is that we can deform any matrix
A =WS via

At =W (tI + (1� t)A) 2 Gln
into a unitary or orthogonal matrix. This means that many topological properties
of Gln can be investigated by studying the compact groups Un and On:

An interesting example of this is that Gln (C) is path connected, i.e., for any
two matrices A;B 2 Gln (C) there is a continuous path C : [0; �] ! Gln (C) such
that C (0) = A and C (�) = B: By way of contrast Gln (R) has two path connected
components. We can see these two facts for n = 1 as Gl1 (C) = f� 2 C : � 6= 0g
is connected, while Gl1 (R) = f� 2 R : � 6= 0g consists of the two components cor-
responding the positive and negative numbers. For general n we can prove this
by using the canonical form for unitary and orthogonal matrices. In the unitary
situation we have that any U 2 Un looks like

U = BDB�

= B

264 exp (i�1) 0
. . .

0 exp (i�n)

375B�;
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where B 2 Un: Then de�ne

D (t) =

264 exp (it�1) 0
. . .

0 exp (it�n)

375 :
Hence D (t) 2 Un and U (t) = BD (t)B� 2 Un de�nes a path that at t = 0 is I and
at t = 1 is U: Thus any unitary transformation can be joined to the identity matrix
inside Un:

In the orthogonal case we see using the real canonical form that a similar
deformation using �

cos (t�i) � sin (t�i)
sin (t�i) cos (t�i)

�
will deform any orthogonal transformation to one of the following two matrices26664

1 0 0
0 1 0

. . .
0 0 1

37775 or O

26664
�1 0 0
0 1 0

. . .
0 0 1

37775Ot:
Here

O

26664
�1 0 0
0 1 0

. . .
0 0 1

37775Ot
is the same as the re�ection Rx where x is the �rst column vector in O ( �1
eigenvector). We then have to show that 1Rn and Rx cannot be joined to each other
inside On: This is done by contradiction. Thus assume that A (t) is a continuous
path with

A (0) =

26664
1 0 0
0 1 0

. . .
0 0 1

37775 ;

A (1) = O

26664
�1 0 0
0 1 0

. . .
0 0 1

37775Ot;
A (t) 2 On; for all t 2 [0; 1] :

The characteristic polynomial

�A(t) (�) = tn + � � �+ a0 (t)

has coe¢ cients that vary continuously with t (the proof of this uses determinants).
However, a0 (0) = (�1)n ; while a0 (1) = (�1)n�1 : Thus the Intermediate Value
Theorem tells us that a0 (t0) = 0 for some t0 2 (0; 1) : But this implies that � = 0
is a root of A (t0) ; thus contradicting that A (t0) 2 On � Gln:
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10.1. Exercises.
(1) Find the polar decomposition for�

� ��
� �

�
;

�
� �
�� �

�
; and

�
� 1
0 �

�
(2) Find the polar decomposition for24 0 � 0

� 0 0
0 0 


35 and

24 1 �1 0
0 0 2
1 1 0

35 :
(3) If L : V ! V is a linear operator on an inner product space. De�ne the

Cayley transform of L as (L+ 1V ) (L� 1V )�1 :
(a) If L is skew-adjoint show that (L+ 1) (L� 1)�1 is an isometry that

does not have �1 as an eigenvalue.
(b) Show that U ! (U � 1V ) (U + 1V )�1 takes isometries that do not

have �1 as an eigenvalue to skew-adjoint operators and is an inverse
to the Cayley transform.

(4) Let L : V ! V be a linear operator on an inner product space. Show that
L = SW; where W is unitary (or orthogonal) and S is self-adjoint with
nonnegative eigenvalues. Moreover, if L is invertible then W and S are
unique. Show by example that the operators in this polar decomposition
do not have to be the same as in the L =WS decomposition.

(5) Let L =WS be the unique polar decomposition of an invertible operator
L : V ! V on a �nite dimensional inner product space V: Show that L is
normal if and only if WS = SW:

(6) The purpose of this exercise is to check some properties of the exponen-
tial map exp : Matn�n (F)! Gln (F) : You may want to consult �Matrix
Exponentials�in Chapter 3 for the de�nition and various elementary prop-
erties.
(a) Show that exp maps normal operators to normal operators.
(b) Show that exp maps self-adjoint operators to positive self-adjoint

operators and that it is a homeomorphism, i.e., it is one-to-one, onto,
continuous and the inverse is also continuous.

(c) Show that exp maps skew-adjoint operators to isometries, but is not
one-to-one. In the complex case show that it is onto.

(7) Let L : V ! V be normal and L = S + A, where S is self-adjoint and A
skew-adjoint. Recall that since L is normal S and A commute.
(a) Show that exp (S) exp (A) = exp (A) exp (S) is the polar decomposi-

tion of exp (L) :
(b) Show that any invertible normal transformation can be written as

exp (L) for some normal L:

11. Quadratic Forms�

Conic sections are those �gures we obtain by intersecting a cone with a plane.
Analytically this is the problem of determining all of the intersections of a cone
given by z = x2 + y2 with a plane z = ax+ by + c.

We can picture what these intersections look like by shining a �ash light on
a wall. The light emanating from the �ash light describes a cone which is then
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intersected by the wall. The �gures we get are circles, ellipses, parabolae and
hyperbolae, depending on how we hold the �ash light.

These questions naturally lead to the more general question of determining the
�gures described by the equation

ax2 + bxy + cy2 + dx+ ey + f = 0:

We shall see below that it is possible to make a linear change of coordinates, that
depends only on the quadratic quantities, such that the equation is transformed
into an equation of the simpler form

a0 (x0)
2
+ c0 (y0)

2
+ d0x0 + e0y0 + f 0 = 0:

It is now easy to see that the solutions to such an equation consist of a circle,
ellipse, parabola, hyperbola, or the degenerate cases of two lines, a point or noth-
ing. Moreover a; b; c together determine the type of the �gure as long as it isn�t
degenerate.

Aside from the esthetical virtues of this problem, it also comes up naturally
when solving the two-body problem from physics. A rather remarkable coincidence
between beauty and the real world. Another application is to the problem of de-
ciding when a function in two variables has a maximum, minimum, or neither at a
critical point.

The goal here is to study this problem in the more general case with n variables
and show how the Spectral Theorem can be brought in to help our investigations.
We shall also explain the use in multivariable calculus.

A quadratic form Q in n real variables x = (x1; :::; xn) is a function of the form

Q (x) =
X

1�i�j�n
aijxixj :

The term xixj only appears once in this sum. We can arti�cially have it appear
twice so that the sum is more symmetric

Q (x) =

nX
i;j=1

a0ijxixj ;

where a0ii = aii and a0ij = a0ji = aij=2: If we de�ne A as the matrix whose entries
are a0ij and use the inner product on Rn; then the quadratic form can be written
in the more abstract and condensed form

Q (x) = (Axjx) :
The important observation is that A is a symmetric real matrix and hence self-
adjoint. This means that we can �nd a new orthonormal basis for Rn that diago-
nalizes A: If this basis is given by the matrix B; then

A = BDB�1

= B

264 �1 0
. . .

0 �n

375B�1

= B

264 �1 0
. . .

0 �n

375Bt
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If we de�ne new coordinates by264 y1
...
yn

375 = B�1

264 x1
...
xn

375 ; or
x = By;

then

Q (x) = (Axjx)
= (AByjBy)
=

�
BtAByjy

�
= Q0 (y) :

Since B is an orthogonal matrix we have that B�1 = Bt and hence BtAB =
B�1AB = D. Thus

Q0 (y) = �1y
2
1 + � � �+ �ny2n

in the new coordinates.
The general classi�cation of the types of quadratic forms is given by

(1) If all of �1; :::; �n are positive or negative, then it is said to be elliptic.
(2) If all of �1; :::; �n are nonzero and there are both negative and positive

values, then it said to be hyperbolic.
(3) If at least one of �1; :::; �n is zero, then it is called parabolic.

In the case of two variables this makes perfect sense as x2 + y2 = r2 is a circle
(special ellipse), x2 � y2 = f two branches of a hyperbola, and x2 = f a parabola.
The �rst two cases occur when �1 � � ��n 6= 0: In this case the quadratic form is
said to be nondegenerate. In the parabolic case �1 � � ��n = 0 and we say that the
quadratic form is degenerate.

Having obtained this simple classi�cation it would be nice to �nd a way of
characterizing these types directly from the characteristic polynomial of A without
having to �nd the roots. This is actually not too hard to accomplish.

Lemma 23. (Descartes�Rule of Signs) Let

p (t) = tn + an�1t
n�1 + � � �+ a1t+ a0 = (t� �1) � � � (t� �n) ;

where a0; :::; an�1; �1; :::; �n 2 R.
(1) 0 is a root of p (t) if and only if a0 = 0:
(2) All roots of p (t) are negative if and only if an�1; :::; a0 > 0:
(3) If n is odd, then all roots of p (t) are positive if and only if an�1 < 0;

an�2 > 0; :::; a1 > 0; a0 < 0:
(4) If n is even, then all roots of p (t) are positive if and only if an�1 < 0;

an�2 > 0; :::; a1 < 0; a0 > 0:

Proof. Descartes rule is actually more general as it relates the number of
positive roots to the number of times the coe¢ cients change sign. The simpler
version, however, su¢ ces for our purposes.

Part 1 is obvious as p (0) = a0:
The relationship

tn + an�1t
n�1 + � � �+ a1t+ a0 = (t� �1) � � � (t� �n)
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clearly shows that an�1; :::; a0 > 0 if �1; :::; �n < 0: Conversely if an�1; :::; a0 > 0;
then it is obvious that p (t) > 0 for all t � 0:

For the other two properties consider q (t) = p (�t) and use 2: �

This lemma gives us a very quick way of deciding whether a given quadratic
form is parabolic or elliptic. If it is not one of these two types, then we know it has
to be hyperbolic.

We can now begin to apply this to multivariable calculus. First let us consider
a function of the form f (x) = a + Q (x) ; where Q is a quadratic form. We note
that f (0) = a and that @f

@xi
(0) = 0 for i = 1; :::; n: Thus the origin is a critical point

for f: The type of the quadratic form will now tell us whether 0 is a maximum,
minimum, or neither. Let us assume that Q is nondegenerate. If 0 > �1 � � � � � �n;
then f (x) � a + �1 jjxjj2 � a and 0 is a maximum for f: On the other hand if
�1 � � � � � �n > 0; then f (x) � a+�n jjxjj2 � a and 0 is a minimum for f: In case
�1; :::; �n have both signs 0 is neither a minimum or a maximum. Clearly f will
increase in directions where �i > 0 and decrease where �i < 0: In such a situation
we say that f has a saddle point : In the parabolic case we can do a similar analysis,
but as we shall see it won�t do us any good for more general functions.

In general we can study a smooth function f : Rn ! R at a critical point x0;
i.e., dfx0 = 0: The Taylor expansion up to order 2 tells us that

f (x0 + h) = f (x0) +
nX

i;j=1

@2f

@xi@xj
(x0)hihj + o

�
khk2

�
;

where o
�
jjhjj2

�
is a function of x0 and h with the property that

lim
h!0

o
�
khk2

�
khk2

= 0:

Using A =
h

@2f
@xi@xj

(x0)
i
the second derivative term therefore looks like a quadratic

form in h: We can now prove

Theorem 42. Let f : Rn ! R be a smooth function that has a critical point
at x0 with �1 � � � � � �n the eigenvalues for the symmetric matrix

h
@2f

@xi@xj
(x0)

i
:

(1) If �n > 0; then x0 is a local minimum for f:
(2) If �1 < 0; then x0 is a local maximum for f:
(3) If �1 > 0 and �n < 0; then f has a saddle point at x0:
(4) Otherwise there is no conclusion about f at x0:

Proof. Case 1 and 2 have similar proofs so we emphasize 1 only. Choose a
neighborhood around x0 where ������

o
�
khk2

�
khk2

������ � �n:



248 4. LINEAR OPERATORS ON INNER PRODUCT SPACES

In this neighborhood we have

f (x0 + h) = f (x0) +
nX

i;j=1

@2f

@xi@xj
(x0)hihj + o

�
khk2

�

� f (x0) + �n jjhjj2 +
o
�
khk2

�
khk2

khk2

= f (x0) +

0@�n + o
�
khk2

�
khk2

1A khk2
� f (x0)

as desired.
In case 3 select unit eigenvectors v1 and vn corresponding to �1 and �n: Then

f (x0 + tvi) = f (x0) + t
2�i + o

�
t2
�
:

As we have

lim
t!0

o
�
t2
�

t2
= 0;

this formula implies that f (x0 + tv1) > f (x0) for small t while f (x0 + tvn) <
f (x0) for small t: This means that f does not have a local maximum or minimum
at x0: �

Example 94. Let f (x; y; z) = x2�y2+3xy�z2+4yz: The derivative is given
by (2x+ 3y;�2y + 3x+ 4z;�2z + 4y) : To see when this is zero we have to solve24 2 3 0

3 �2 4
0 4 �2

3524 x
y
z

35 =
24 0
0
0

35
One quickly sees that (0; 0; 0) is the only solution. We now wish to check what type
of critical point this is. Thus we compute the second derivative matrix24 2 3 0

3 �2 4
0 4 �2

35
The characteristic polynomial is t3+2t2�29t+6: The coe¢ cients do not conform to
the patterns that guarantee that the roots are all positive or negative so we conclude
that the origin is a saddle point.

Example 95. The function f (x; y) = x2�y4 has a critical point at (0; 0) : The
second derivative matrix is �

2 0
0 �12y2

�
:

When y = 0; this is of parabolic type so we can�t conclude what type of critical point
it is. In reality it is a minimum when + is used and a saddle point when � is used
in the de�nition for f:
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Example 96. Let Q be a quadratic form corresponding to the matrix

A =

2664
6 1 2 3
1 5 0 4
2 0 2 0
3 4 0 7

3775
The characteristic polynomial is given by t4� 20t3+113t2� 200t+96: Here we see
that the coe¢ cients tells us that the roots must be positive.

11.1. Exercises.
(1) A bilinear form on a vector space V is a function B : V � V ! F such

that x! B (x; y) and y ! B (x; y) are both linear. Show that a quadratic
form Q always looks like Q (x) = B (x; x) ; where B is a bilinear form.

(2) A bilinear form is said to be symmetric, respectively skew-symmetric, if
B (x; y) = B (y; x) ; respectively B (x; y) = �B (y; x) for all x; y:
(a) Show that a quadratic form looks like Q (x) = B (x; x) where B is

symmetric.
(b) Show that B (x; x) = 0 for all x 2 V if and only if B is skew-

symmetric.
(3) Let B be a bilinear form on Rn or Cn.

(a) Show that B (x; y) = (Axjy) for some matrix A:
(b) Show that B is symmetric if and only if A is symmetric.
(c) Show that B is skew-symmetric if and only if A is skew-symmetric.
(d) If x = Cx0 is a change of basis show that if B corresponds to A in

the standard basis, then it corresponds to CtAC in the new basis.
(4) Let Q (x) be a quadratic form on Rn: Show that there is an orthogonal

basis where

Q (z) = �z21 � � � � � z2k + z2k+1 + � � �+ z2l ;
where 0 � k � l � n: Hint: Use the orthonormal basis that diagonalized
Q and adjust the lengths of the basis vectors.

(5) Let B (x; y) be a skew-symmetric form on Rn:

(a) If B (x; y) = (Axjy) where A =

�
0 ��
� 0

�
; � 2 R; then show

that there is a basis for R2 where B (x0; y0) corresponds to A0 =�
0 �1
1 0

�
:

(b) If B (x; y) is a skew-symmetric bilinear form on Rn; then there is a
basis where B (x0; y0) corresponds to a matrix of the type

A0 =

266666666666664

0 �1 � � � 0 0 0 � � � 0

1 0 0 0 0 0
... 0

...
...

. . . 0 0 0
... 0

0 0 0 0 �1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 � � � 0

0 0 � � � 0 0
...

. . .
...

0 0 � � � 0 0 0 � � � 0

377777777777775
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(6) Show that for a quadratic form Q (z) on Cn we can always change coor-
dinates to make it look like

Q0 (z0) = (z01)
2
+ � � �+ (z0n)

2
:

(7) Show that Q (x; y) = ax2 + 2bxy + cy2 is elliptic when ac � b2 > 0,
hyperbolic when ac� b2 < 0, and parabolic when ac� b2 = 0:

(8) If A is a symmetric real matrix, then show that tI +A de�nes an elliptic
quadratic form when jtj is su¢ ciently large.

(9) Decide for each of the following matrices whether or not the corresponding
quadratic form is elliptic, hyperbolic, or parabolic.

(a)

2664
�7 �2 �3 0
�2 �6 �4 0
�3 �4 �5 2
0 0 2 �3

3775 :

(b)

2664
7 3 �3 4
3 2 �1 0
�3 �1 5 �2
4 0 �2 10

3775 :

(c)

2664
�8 �3 0 �2
�3 �1 �1 0
0 �1 1 3
�2 0 3 �3

3775 :

(d)

2664
15 2 3 4
2 4 2 0
3 2 3 �2
4 0 �2 5

3775 :



CHAPTER 5

Determinants

1. Geometric Approach

Before plunging in to the theory of determinants we are going to make an
attempt at de�ning them in a more geometric fashion. This works well in low di-
mensions and will serve to motivate our more algebraic constructions in subsequent
sections.

From a geometric point of view the determinant of a linear operator L : V !
V is a scalar det (L) that measures how L changes the volume of solids in V .
To understand how this works we obviously need to �gure out how volumes are
computed in V: In this section we will study this problem in dimensions 1 and 2:
In subsequent sections we take a more axiomatic and algebraic approach, but the
ideas come from what we have presented here.

Let V be 1-dimensional and assume that the scalar �eld is R so as to keep
things as geometric as possible. We already know that L : V ! V must be of the
form L (x) = �x for some � 2 R: This � clearly describes how L changes the length
of vectors as jjL (x)jj = j�j jjxjj : The important and surprising thing to note is that
while we need an inner product to compute the length of vectors it is not necessary
to know the norm in order to compute how L changes the length of vectors.

Let now V be 2-dimensional. If we have a real inner product, then we can talk
about areas of simple geometric con�gurations. We shall work with parallelograms
as they are easy to de�ne, one can easily �nd their area, and linear operators map
parallelograms to parallelograms. Given x; y 2 V the parallelogram � (x; y) with
sides x and y is de�ned by

� (x; y) = fsx+ ty : s; t 2 [0; 1]g :

The area of � (x; y) can be computed by the usual formula where one multiplies
the base length with the height. If we take x to be the base, then the height is the
projection of y onto to orthogonal complement of x: Thus we get the formula

area (� (x; y)) = kxk ky � projx (y)k

= kxk





y � (yjx)xjjxjj2






 :
This expression does not appear to be symmetric in x and y; but if we square it we

251
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get

(area (� (x; y)))
2
= (xjx) (y � projx (y) jy � projx (y))
= (xjx) ((yjy)� 2 (yjprojx (y)) + (projx (y) jprojx (y)))

= (xjx)
 
(yjy)� 2

 
y

����� (yjx)xkxk2

!
+

 
(yjx)x
kxk2

����� (yjx)xkxk2

!!
= (xjx) (yjy)� (xjy)2 ;

which is symmetric in x and y: Now assume that

x0 = �x+ �y

y0 = 
x+ �y

or �
x0 y0

�
=
�
x y

� � � 

� �

�
then we see that

(area (� (x0; y0)))
2

= (x0jx0) (y0jy0)� (x0jy0)2

= (�x+ �yj�x+ �y) (
x+ �yj
x+ �y)� (�x+ �yj
x+ �y)2

=
�
�2 (xjx) + 2�� (xjy) + �2 (yjy)

� �

2 (xjx) + 2
� (xjy) + �2 (yjy)

�
� (�
 (xjx) + (�� + �
) (xjy) + �� (yjy))2

=
�
�2�2 + �2
2 � 2��
�

� �
(xjx) (yjy)� (xjy)2

�
= (�� � �
)2 (area (� (x; y)))2 :

This tells us several things. First, if we know how to compute the area of just
one parallelogram, then we can use linear algebra to compute the area of any
other parallelogram by simply expanding the base vectors for the new parallelogram
in terms of the base vectors of the given parallelogram. This has the surprising
consequence that the ratio of the areas of two parallelograms does not depend
upon the inner product! With this in mind we can then de�ne the determinant of
a linear operator L : V ! V so that

(det (L))
2
=
(area (� (L (x) ; L (y))))

2

(area (� (x; y)))
2 :

To see that this doesn�t depend on x and y we chose x0 and y0 as above and note
that �

L (x0) L (y0)
�
=
�
L (x) L (y)

� � � 

� �

�
and

(area (� (L (x0) ; L (y0))))
2

(area (� (x0; y0)))
2 =

(�� � �
)2 (area (� (L (x) ; L (y))))2

(�� � �
)2 (area (� (x; y)))2

=
(area (� (L (x) ; L (y))))

2

(area (� (x; y)))
2 :
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Thus (det (L))2 depends neither on the inner product that is used to compute the
area nor on the vectors x and y: Finally we can re�ne the de�nition so that

det (L) =

���� a c
b d

���� = ad� bc; where

�
L (x) L (y)

�
=

�
x y

� � a c
b d

�
:

This introduces a sign in the de�nition which one can also easily check doesn�t
depend on the choice of x and y:

This approach generalizes to higher dimensions, but it also runs into a little
trouble. The keen observer might have noticed that the formula for the area is in
fact a determinant

(area (� (x; y)))
2
= (xjx) (yjy)� (xjy)2

=

���� (xjx) (xjy)
(xjy) (yjy)

���� :
When passing to higher dimensions it will become increasingly harder to justify
how the volume of a parallelepiped depends on the base vectors without using a
determinant. Thus we encounter a bit of a vicious circle when trying to de�ne
determinants in this fashion.

The other problem is that we used only real scalars. One can modify the
approach to also work for complex numbers, but beyond that there isn�t much
hope. The approach we take below is mirrored on the constructions here, but they
work for general scalar �elds.

2. Algebraic Approach

As was done in the previous section we are going to separate the idea of volumes
and determinants, the latter being exclusively for linear operators and a quantity
which is independent of others structures on the vector space. Since what we are
going to call volume forms are used to de�ne determinants we start by de�ning
these. Unlike the more motivational approach we took in the previous section we
are here going to take a more axiomatic approach.

Let V be an n-dimensional vector space over F: A volume form

vol :

n timesz }| {
V � � � � � V ! F

is simply a multi-linear map, i.e., it is linear in each variable if the others are �xed,
that is also alternating. More precisely if x1; :::; xi�1; xi+1; :::xn 2 V then

x! vol (x1; :::; xi�1; x; xi+1; :::; xn)

is linear, and for i < j we have the alternating property when xi and xj are trans-
posed:

vol (:::; xi; :::; xj ; :::) = � vol (:::; xj ; :::; xi; :::) :
In �Existence of the Volume Form�below we shall show that such volume forms
always exist. In this section we are going to establish some important properties
and also give some methods for computing volumes.

Proposition 30. Let vol : V � � � � � V ! F be a volume form on an n-
dimensional vector space over F: Then
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(1) vol (:::; x; :::; x; :::) = 0:
(2) vol (x1; :::; xi�1; xi + y; xi+1; :::; xn) = vol (x1; :::; xi�1; xi; xi+1; :::; xn) if y =P

k 6=i �kxk is a linear combination of x1; :::; xi�1; xi+1; :::xn:
(3) vol (x1; :::; xn) = 0 if x1; :::; xn are linearly dependent.
(4) If vol (x1; :::; xn) 6= 0; then x1; :::; xn form a basis for V:

Proof. 1. The alternating property tells us that

vol (:::; x; :::; x; :::) = � vol (:::; x; :::; x; :::)
if we switch x and x. Thus vol (:::; x; :::; x; :::) = 0:

2. Let y =
P

k 6=i �kxk and use linearity to conclude

vol (x1; :::; xi�1; xi + y; xi+1; :::; xn) = vol (x1; :::; xi�1; xi; xi+1; :::; xn)

+
X
k 6=i

�k vol (x1; :::; xi�1; xk; xi+1; :::; xn) :

Since xk is always equal to one of x1; :::; xi�1; xi+1; :::xn we see that

�k vol (x1; :::; xi�1; xk; xi+1; :::; xn) = 0:

This implies the claim.
3. If x1 = 0 we are �nished. Otherwise we have that some xk =

Pk�1
i=1 �ixi;

then 2. implies that

vol (x1; :::; 0 + xk; :::; xn) = vol (x1; :::; 0; :::; xn)

= 0:

4. From 3. we have that x1; :::; xn are linearly independent. Since V has
dimension n they must also form a basis. �

Note that in the above proof we had to use that 1 6= �1 in the scalar �eld.
This is certainly true for the �elds we work with. When working with more general
�elds like F = f0; 1g we need to modify the alternating property. Instead we can
assume that the volume form vol (x1; :::; xn) satis�es: vol (x1; :::; xn) = 0 whenever
xi = xj : This in turn implies the alternating property. To prove this note that if
x = xi + xj ; then

0 = vol

�
:::;

ith place
x ; :::;

jth place
x ; :::

�
= vol

�
:::;

ith place
xi + xj ; :::;

jth place
xi + xj ; :::

�
= vol

�
:::;

ith place
xi ; :::;

jth place
xi ; :::

�
+ vol

�
:::;

ith place
xj ; :::;

jth place
xi ; :::

�
+vol

�
:::;

ith place
xi ; :::;

jth place
xj ; :::

�
+ vol

�
:::;

ith place
xj ; :::;

jth place
xj ; :::

�
= vol

�
:::;

ith place
xj ; :::;

jth place
xi ; :::

�
+ vol

�
:::;

ith place
xi ; :::;

jth place
xj ; :::

�
;

which shows that the form is alternating.

Theorem 43. (Uniqueness of Volume Forms) Let vol1; vol2 : V � � � � � V ! F
be two volume forms on an n-dimensional vector space over F: If vol2 is nontrivial
then vol1 = � vol2 for some � 2 F:
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Proof. If we assume that vol2 is nontrivial, then we can �nd x1; :::; xn 2 V so
that vol2 (x1; :::; xn) 6= 0: Then de�ne � so that

vol1 (x1; :::; xn) = � vol2 (x1; :::; xn) :

If z1; :::; zn 2 V; then we can write�
z1 � � � zn

�
=

�
x1 � � � xn

�
A

=
�
x1 � � � xn

� 264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375
For any volume form vol we then have

vol (z1; :::; zn) = vol

 
nX

i1=1

xi1�i11; :::;
nX

in=1

xin�inn

!

=
nX

i1=1

�i11 vol

 
xi1 ; :::;

nX
in=1

�innxin

!
...

=
nX

i1;:::;in=1

�i11 � � ��inn vol (xi1 ; :::; xin) :

The �rst thing we should note is that vol (xi1 ; :::; xin) = 0 if any two of the indices
i1; :::; in are equal. When doing the sum

nX
i1;:::;in=1

�i11 � � ��inn vol (xi1 ; :::; xin)

we can therefore assume that all of the indices i1; :::; in are di¤erent. This means
that by switching indices around we have

vol (xi1 ; :::; xin) = � vol (x1; :::; xn)
where the sign � depends on the number of switches we have to make in order to
rearrange i1; :::; in to get back to the standard ordering 1; :::; n: Since this number
of switches does not depend on vol but only on the indices we obtain the desired
result:

vol1 (z1; :::; zn) =
nX

i1;:::;in=1

��i11 � � ��inn vol1 (x1; :::; xn)

=
nX

i1;:::;in=1

��i11 � � ��inn� vol2 (x1; :::; xn)

= �
nX

i1;:::;in=1

��i11 � � ��inn vol2 (x1; :::; xn)

= � vol2 (z1; :::; zn) :

�

From the proof of this theorem we also obtain one of the crucial results about
volumes that we mentioned in the previous section.
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Corollary 40. If x1; :::; xn 2 V is a basis for V then any volume form vol is
completely determined by its value vol (x1; :::; xn) :

This corollary could be used to create volume forms by simply de�ning

vol (z1; :::; zn) =
X

i1;:::;in

��i11 � � ��inn vol (x1; :::; xn) ;

where fi1; :::; ing = f1; :::; ng : For that to work we would have to show that the
sign � is well-de�ned in the sense that it doesn�t depend on the particular way in
which we reorder i1; :::; in to get 1; :::; n: While this is certainly true we shall not
prove this combinatorial fact here. Instead we observe that if we have a volume
form that is nonzero on x1; :::; xn then the fact that vol (xi1 ; :::; xin) is a multiple of
vol (x1; :::; xn) tells us that this sign is well-de�ned and so doesn�t depend on the way
in which 1; :::; n was rearranged to get i1; :::; in: We use the notation sign (i1; :::; in)
for the sign we get from

vol (xi1 ; :::; xin) = sign (i1; :::; in) vol (x1; :::; xn) :

Our last property for volume forms is to see what happens when we restrict it
to subspaces. To this end, let vol be a nontrivial volume form on V and M � V a
k-dimensional subspace of V: If we �x vectors y1; :::; yn�k 2 V; then we can de�ne
a form on M by

volM (x1; :::; xk) = vol (x1; :::; xk; y1; :::; yn�k)

where x1; :::; xk 2 M: It is clear that volM is linear in each variable and also al-
ternating as vol has those properties. Moreover, if y1; :::; yn�k form a basis for a
complement to M in V; then x1; :::; xk; y1; :::; yn�k will be a basis for V as long as
x1; :::; xk is a basis for M: In this case volM becomes a nontrivial volume form as
well. If, however, some linear combination of y1; :::; yn�k lies in M then it follows
that volM = 0:

2.1. Exercises.
(1) Let V be a 3-dimensional real inner product space and vol a volume form

so that vol (e1; e2; e3) = 1 for some orthonormal basis. For x; y 2 V de�ne
x� y as the unique vector such that

vol (x; y; z) = vol (z; x; y) = (zjx� y) :
(a) Show that x� y = �y � x and that x! x� y is linear:
(b) Show that

(x1 � y1jx2 � y2) = (x1jx2) (y1jy2)� (x1jy2) (x2jy1) :
(c) Show that

kx� yk = kxk kyk jsin �j ;
where

cos � =
(x; y)

kxk kyk :

(d) Show that

x� (y � z) = (xjz) y � (xjy) z:
(e) Show that the Jacobi identity holds

x� (y � z) + z � (x� y) + y � (z � x) = 0:



2. ALGEBRAIC APPROACH 257

(2) Let x1; :::; xn 2 Rn and do a Gram-Schmidt procedure so as to obtain a
QR decomposition

�
x1 � � � xn

�
=
�
e1 � � � en

� 264 r11 � � � r1n
. . .

...
0 rnn

375 ;
Show that

vol (x1; :::; xn) = r11 � � � rnn vol (e1; :::; en)

and explain why r11 � � � rnn gives the geometrically de�ned volume that
comes from the formula where one multiplies height and base �area�and
in turn uses that same principle to compute the base �area�etc. In other
words

r11 = kx1k ;
r22 =



x2 � projx1 (x2)

 ;
...

rnn =



xn � projMn�1 (xn)




 :
(3) Show that

vol

��
�
�

�
;

�


�

��
= �� � 
�

de�nes a volume form on F2 such that vol (e1; e2) = 1:
(4) Show that we can de�ne a volume form on F3 by

vol

0@24 a11
a21
a31

35 ;
24 a12
a22
a32

35 ;
24 a13
a23
a33

351A = a11 vol

��
a22
a32

�
;

�
a23
a33

��

�a12 vol
��

a21
a31

�
;

�
a23
a33

��
+a13 vol

��
a21
a31

�
;

�
a22
a32

��
= a11a22a33 + a12a23a31 + a13a32a21

�a11a23a32 � a33a12a21 � a22a13a31:

(5) Assume that vol (e1; :::; e4) = 1 for the standard basis in R4: Using the
permutation formula for the volume form determine with a minimum of
calculations the sign for the volume of the columns in each of the matrices.

(a)

2664
1000 �1 2 �1
1 1000 1 2
3 �2 1 1000
2 �1 1000 2

3775
(b)

2664
2 1000 2 �1
1 �1 1000 2
3 �2 1 1000
1000 �1 1 2

3775
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(c)

2664
2 �2 2 1000
1 �1 1000 2
3 1000 1 �1
1000 �1 1 2

3775
(d)

2664
2 �2 1000 �1
1 1000 2 2
3 �1 1 1000
1000 �1 1 2

3775
3. How to Calculate Volumes

Before establishing the existence of the volume form we shall try to use what we
learned in the previous section in a more concrete fashion to calculate vol (z1; :::; zn).
Assume that vol (z1; :::; zn) is a volume form on V and that there is a basis x1; :::; xn
for V where vol (x1; :::; xn) is known. First observe that when�

z1 � � � zn
�
=
�
x1 � � � xn

�
A

and A = [�ij ] is an upper triangular matrix then �i11 � � ��inn = 0 unless i1 �
1; :::; in � n: Since we also need all the indices i1; :::; in to be distinct, this implies
that i1 = 1; ::::; in = n: Thus we have the simple relationship

vol (z1; :::; zn) = �11 � � ��nn vol (x1; :::; xn) :
While we can�t expect this to happen too often it is possible to change z1; :::; zn to
vectors y1; :::; yn in such a way that

vol (z1; :::; zn) = � vol (y1; :::; yn)
and �

y1 � � � yn
�
=
�
x1 � � � xn

�
A

where A is upper triangular.
To construct the yis we simply use elementary column operations. This works in

almost the same way as Gauss elimination but with the twist that we are multiplying
by matrices on the right (see also �Row Reduction� in chapter 1). The allowable
operations are

(1) Interchanging vectors zk and zl.
(2) Multiplying zl by � 2 F and adding it to zk:
The second operation does change volume, hwile the �rst changes it by a sign.

So if
�
y1 � � � yn

�
is obtained from

�
z1 � � � zn

�
through these operations

we have
vol (z1; :::; zn) = � vol (y1; :::; yn) :

The minus sign occurs exactly when we have done an odd number of interchanges.
We now need to explain why we can obtain

�
y1 � � � yn

�
such that

�
y1 � � � yn

�
=
�
x1 � � � xn

�
26664
�11 �12 � � � �1n
0 �22 �2n
...

. . .
...

0 0 � � � �nn

37775 :
The only thing to note is that the process might break down if z1; ::::; zn are linearly
dependent. In that case we have vol = 0:
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Instead of describing the procedure abstractly let us see how it works in prac-
tice. In the case of Fn we assume that we are using a volume form such that
vol (e1; :::; en) = 1 for the canonical basis. Since that uniquely de�nes the volume
form we introduce some special notation for it

jAj =
�� x1 � � � xn

�� = vol (x1; :::; xn)
where A 2 Matn�n (F) is the matrix such that�

x1 � � � xn
�
=
�
e1 � � � en

�
A

Example 97. Let

�
z1 z2 z3

�
=

24 0 1 0
0 0 3
�2 0 0

35 :
We can rearrange this into

�
z2 z3 z1

�
=

24 1 0 0
0 3 0
0 0 �2

35
This takes two transpositions. Thus

vol (z1; z2; z3) = vol (z2; z3; z1)

= 1 � 3 � (�2) vol (e1; e2; e3)
= �6 vol (e1; e2; e3) :

Example 98. Let

�
z1 z2 z3 z4

�
=

2664
3 0 1 3
1 �1 2 0
�1 1 0 �2
�3 1 1 �3

3775 :
��������
3 0 1 3
1 �1 2 0
�1 1 0 �2
�3 1 1 �3

��������
=

��������
0 1 2 3
1 �1 2 0
1 1

3 � 23 �2
0 0 0 �3

�������� after eliminating entries in row 4,

=

��������
3 2 2 3
4 0 2 0
0 0 � 23 �2
0 0 0 �3

�������� after eliminating entries in row 3,

=

��������
2 3 2 3
0 4 2 0
0 0 � 23 �2
0 0 0 �3

�������� after switching column one and two.
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Thus we get

vol (z1; :::; z4) = �2 � 4 �
�
�2
3

�
� (�3) vol (e1; :::; e4)

= �16 vol (e1; :::; e4) :

Example 99. Let us try to �nd

�����������

1 1 1 � � � 1
1 2 2 � � � 2
1 2 3 � � � 3
...
...
...
. . .

...
1 2 3 � � � n

�����������
Instead of starting with the last column vector we are going to start with the �rst.
This will lead us to a lower triangular matrix, but otherwise we are using the same
principles.

�����������

1 1 1 � � � 1
1 2 2 � � � 2
1 2 3 � � � 3
...
...
...
. . .

...
1 2 3 � � � n

�����������
=

�����������

1 0 0 � � � 0
1 1 1 � � � 1
1 1 2 � � � 2
...
...
...
. . .

...
1 1 2 � � � n� 1

�����������
=

�����������

1 0 0 � � � 0
1 1 0 � � � 0
1 1 1 � � � 1
...
...
...
. . .

...
1 1 1 � � � n� 2

�����������
...

=

�����������

1 0 0 � � � 0
1 1 0 � � � 0
1 1 1 � � � 0
...
...
...
. . .

...
1 1 1 � � � 1

�����������
= 1

3.1. Exercises.

(1) The following problem was �rst considered by Leibniz and appears to be
the �rst use of determinants. Let A 2 Mat(n+1)�n (F) and b 2 Fn+1:
(a) If there is a solution to the over determined system Ax = b, x 2 Fn;

then the augmented matrix satis�es jAj bj = 0:
(b) Conversely, if A has rank (A) = n and jAj bj = 0; then there is a

solution to Ax = b, x 2 Fn:
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(2) Find �����������

1 1 1 � � � 1
0 1 1 � � � 1
1 0 1 � � � 1
...

...
...

. . .
...

1 � � � 1 0 1

�����������
(3) Let x1; :::; xk 2 Rn and assume that vol (e1; :::; en) = 1: Show that

jG (x1; :::; xk)j � kx1k2 � � � kxkk2 ;

where G (x1; :::; xk) is the Gram matrix whose ij entries are the inner
products (xj jxi) :

(4) Think of Rn as an inner product space where vol (e1; :::; en) = 1:
(a) If x1; :::; xn 2 Rn; show that

G (x1; :::; xn) =
�
x1 � � � xn

�� �
x1 � � � xn

�
:

(b) Show that

jG (x1; :::; xn)j = jvol (x1; :::; xn)j2 :

(c) Using the previous exercise conclude that Hadamard�s inequality
holds

jvol (x1; :::; xn)j2 � kx1k2 � � � kxnk2 :

(d) When is

jvol (x1; :::; xn)j2 = kx1k2 � � � kxnk2?

(5) Assume that vol (e1; :::; e4) = 1 for the standard basis in R4: Find the
volumes

(a)

��������
0 �1 2 �1
1 0 1 2
3 �2 1 0
2 �1 0 2

��������
(b)

��������
2 0 2 �1
1 �1 0 2
3 �2 1 1
0 �1 1 2

��������
(c)

��������
2 �2 2 0
1 �1 1 2
3 0 1 �1
1 �1 1 2

��������
(d)

��������
2 �2 0 �1
1 1 2 2
3 �1 1 1
1 �1 1 2

��������
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4. Existence of the Volume Form

The construction of vol (x1; :::; xn) proceeds by induction on the dimension of
V: Thus �x a basis e1; :::; en 2 V that we assume is going to have unit volume. Next
we assume, by induction, that there is a volume form voln�1 on span fe2; :::; eng
such that e2; :::; en has unit volume. Finally let E : V ! V be the projection
onto span fe2; :::; eng whose kernel is span fe1g : For a collection x1; :::; xn 2 V we
decompose xi = �ie1 + E (xi) : The volume form voln on V is now de�ned by

voln (x1; :::; xn) =
nX
k=1

(�1)k�1 �k voln�1
�
E (x1) ; :::; \E (xk); :::; E (xn)

�
:

This is essentially like de�ning the volume via a Laplace expansion along the �rst
row. As �k; E; and vol

n�1 are linear it is obvious that the new voln form is linear
in each variable. The alternating property follows if we can show that the form
vanishes when xi = xj . This is done as follows

voln (:::; xi; :::xj ; :::)

=
X
k 6=i;j

(�1)k�1 �k voln�1
�
:::; E (xi) ; :::; \E (xk); :::; E (xj) ; :::

�
+(�1)i�1 �i voln�1

�
:::;\E (xi); :::; E (xj) ; :::

�
+(�1)j�1 �j voln�1

�
:::; E (xi) ; :::; \E (xj); :::

�
Using that E (xi) = E (xj) and vol

n�1 is alternating on span fe2; :::; eng shows

voln�1
�
:::; E (xi) ; :::; \E (xk); :::; E (xj) ; :::

�
= 0

Hence

voln (:::; xi; :::xj ; :::)

= (�1)i�1 �i voln�1
�
:::;\E (xi); :::; E (xj) ; :::

�
+(�1)j�1 �j voln�1

�
:::; E (xi) ; :::; \E (xj); :::

�
= (�1)i�1 (�1)j�1�i �i voln�1

 
:::; E (xi�1) ;

ith place
E (xj) ; E (xi+1) :::

!
+(�1)j�1 �j voln�1

�
:::; E (xi) ; :::; \E (xj); :::

�
;

where moving E (xj) to the ith-place in the expression

voln�1
�
:::;\E (xi); :::; E (xj) ; :::

�
requires j�1� i moves since E (xj) is in the (j � 1)-place. Using that �i = �j and
E (xi) = E (xj) ; this shows

voln (:::; xi; :::xj ; :::) = (�1)j�2 �i voln�1
 
:::;

ith place
E (xj) ; :::; ; :::

!
+(�1)j�1 �j voln�1

�
:::; E (xi) ; :::; \E (xj); :::

�
= 0:
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Aside from de�ning the volume form we also get a method for calculating
volumes using induction on dimension. In F we just de�ne vol (x) = x: For F2 we
have

vol

��
a
b

�
;

�
c
d

��
= ad� cb:

In F3 we get

vol

0@24 a11
a21
a31

35 ;
24 a12
a22
a32

35 ;
24 a13
a23
a33

351A = a11 vol

��
a22
a32

�
;

�
a23
a33

��

�a12 vol
��

a21
a31

�
;

�
a23
a33

��
+a13 vol

��
a21
a31

�
;

�
a22
a32

��
= a11a22a33 + a12a23a31 + a13a21a32

�a11a32a23 � a12a21a33 � a13a31a22
= a11a22a33 + a12a23a31 + a13a32a21

�a11a23a32 � a33a12a21 � a22a13a31:

In the above de�nition there is, of course, nothing special about the choice of
basis e1; :::; en or the ordering of the basis. Let us refer to the speci�c choice of
volume form as vol1 as we are expanding along the �rst row. If we switch e1 and ek
then we are apparently expanding along the kth row instead. This de�nes a volume
form volk : By construction we have

vol1 (e1; :::; en) = 1;

volk

�
ek; e2; :::;

kth place

e1 ; :::; en

�
= 1:

Thus

vol1 = (�1)k�1 volk
= (�1)k+1 volk :

So if we wish to calculate vol1 by an expansion along the kth row we need to
remember the extra sign (�1)k+1 : In the case of Fn we de�ne the volume form vol
to be vol1 as constructed above. In this case we shall often just write�� x1 � � � xn

�� = vol (x1; :::; xn)
as in the previous section.

Example 100. Let us try this with the example from the previous section

�
z1 z2 z3 z4

�
=

2664
3 0 1 3
1 �1 2 0
�1 1 0 �2
�3 1 1 �3

3775 :



264 5. DETERMINANTS

Expansion along the �rst row gives

�� z1 z2 z3 z4
�� = 3

������
�1 2 0
1 0 �2
1 1 �3

������� 0
������
1 2 0
�1 0 �2
�3 1 �3

������
+1

������
1 �1 0
�1 1 �2
�3 1 �3

������� 3
������
1 �1 2
�1 1 0
�3 1 1

������
= 3 � 0� 0 + 1 � (�4)� 3 � 4
= �16

Expansion along the second row gives

�� z1 z2 z3 z4
�� = �1

������
0 1 3
1 0 �2
1 1 �3

������+ (�1)
������
3 1 3
�1 0 �2
�3 1 �3

������
�2

������
3 0 3
�1 1 �2
�3 1 �3

������+ 0
������
3 0 1
�1 1 0
�3 1 1

������
= �1 � 4� 1 � 6� 2 � 3 + 0
= �16

The general formula in Fn for expanding along the kth row in an n� n matrix
A =

�
x1 � � � xn

�
is called the Laplace expansion along the kth row and looks

like

jAj = (�1)k+1 �k1 jAk1j+ (�1)k+2 �k2 jAk2j+ � � �+ (�1)k+n �kn jAknj

=

nX
i=1

(�1)k+i �ki jAkij :

Here �ij is the ij entry in A; i.e., the ith coordinate for xj ; and Aij is the companion
(n� 1)�(n� 1)matrix for �ij : The matrix Aij is constructed from A by eliminating
the ith row and jth column. Note that the exponent for �1 is i+ j when we are at
the ij entry �ij :

This expansion gives us a very intriguing formula for the determinant that looks
like we have used the chain rule for di¤erentiation in several variables. To explain
this let us think of jAj as a function in the entries xij : The expansion along the kth
row then looks like

jAj = (�1)k+1 xk1 jAk1j+ (�1)k+2 xk2 jAk2j+ � � �+ (�1)k+n xkn jAknj :

From the de�nition of jAkj j it follows that it does depend on the variables xki: Thus

@ jAj
@xki

= (�1)k+1 @xk1
@xki

jAk1j+ (�1)k+2
@xk2
@xki

jAk2j+ � � �+ (�1)k+n
@xkn
@xki

jAknj

= (�1)k+i jAkij :



4. EXISTENCE OF THE VOLUME FORM 265

Replacing (�1)k+i jAkij by the partial derivative then gives us the formula

jAj = xk1
@ jAj
@xk1

+ xk2
@ jAj
@xk2

+ � � �+ xkn
@ jAj
@xkn

=
nX
i=1

xki
@ jAj
@xki

:

Since we get the same answer for each k this implies

n jAj =
nX

i;j=1

xij
@ jAj
@xij

:

4.1. Exercises.
(1) Find the determinant of the following n � n matrix where all entries are

1 except the entries just below the diagonal which are 0:������������

1 1 1 � � � 1
0 1 1 � � � 1

1 0 1 � � �
...

... 1
. . .

. . . 1
1 � � � 1 0 1

������������
(2) Find the determinant of the following n� n matrix������������

1 � � � 1 1 1
2 � � � 2 2 1

3 � � � 3 1
...

... 1 � � � 1
n 1 � � � 1 1

������������
(3) (The Vandermonde Determinant)

(a) Show that���������
1 � � � 1
�1 � � � �n
...

...
�n�11 � � � �n�1n

��������� =
Y
i<j

(�i � �j) :

(b) When �1; :::; �n are the complex roots of a polynomial p (t) = tn +
an�1t

n�1 + � � �+ a1t+ a0; we de�ne the discriminant of p as

� = D =

0@Y
i<j

(�i � �j)

1A2

:

When n = 2 show that this conforms with the usual de�nition. In
general one can compute � from the coe¢ cients of p: Show that �
is real if p is real.

(4) Consider the polynomial in n variables

p (x1; :::; xn) =
Y
i<j

(xi � xj)
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(a) If � 2 Sn is a permutation, then
sign (�) p (x1; :::; xn) = p

�
x�(1); :::; x�(n)

�
:

(b) Using this show that the sign function Sn ! f�1g is a homomor-
phism, i.e., sign (��) = sign (�) sign (�) :

(c) Using the above characterization show that sign (�) can be deter-
mined by the number of inversions in the permutation. An inversion
in � is a pair of consecutive integers whose order is reversed, i.e.,
� (i) > � (i+ 1) :

(5) Let An = [�ij ] be a real skew-symmetric n� n matrix, i.e., �ij = ��ji .
(a) Show that jA2j = �212:

(b) Show that jA4j = (�12�34 + �14�23 � �13�24)2.
(c) Show that jA2nj � 0:
(d) Show that jA2n+1j = 0:

(6) Show that the n� n matrix satis�es�����������

� � � � � � �
� � � � � � �
� � � � � � �
...

...
...

. . .
...

� � � � � � �

�����������
= (�+ (n� 1)�) (�� �)n�1 :

(7) Show that the n� n matrix

An =

2666664
�1 1 0 � � � 0
�1 �2 1 � � � 0
0 �1 �3 � � � 0
...

...
...

. . .
...

0 0 0 � � � �n

3777775
satis�es

jA1j = �1

jA2j = 1 + �1�2;

jAnj = �n jAn�1j+ jAn�2j :
(8) Show that an n�m matrix has (column) rank � k if and only there is a

submatrix of size k� k with nonzero determinant. Use this to prove that
row and column ranks are equal.

(9) (a) Show that the area of the triangle whose vertices are�
�1
�1

�
;

�
�2
�2

�
;

�
�3
�3

�
2 R2

is given by

1

2

������
1 1 1
�1 �2 �3
�1 �2 �3

������ :
(b) Show that 3 vectors�

�1
�1

�
;

�
�2
�2

�
;

�
�3
�3

�
2 R2
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satisfy ������
1 1 1
�1 �2 �3
�1 �2 �3

������ = 0
if and only if they are collinear, i.e., lie on a line l = fat+ b : t 2 Rg,
where a; b 2 R2:

(c) Show that 4 vectors24 �1
�1

1

35 ;
24 �2
�2

2

35 ;
24 �3
�3

3

35 ;
24 �4
�4

4

35 2 R3
satisfy ��������

1 1 1 1
�1 �2 �3 �4
�1 �2 �3 �4

1 
2 
3 
4

�������� = 0
if and only if they are coplanar, i.e., lie in the same plane � =�
x 2 R3 : (a; x) = �

	
:

(10) Let �
�1
�1

�
;

�
�2
�2

�
;

�
�3
�3

�
2 R2

be three points in the plane.
(a) If �1; �2; �3 are distinct, then the equation for the parabola y =

ax2 + bx+ c passing through the three given points is given by��������
1 1 1 1
x �1 �2 �3
x2 �21 �22 �23
y �1 �2 �3

��������������
1 1 1
�1 �2 �3
�21 �22 �23

������
= 0:

(b) If the points are not collinear, then the equation for the circle x2 +
y2 + ax+ by + c = 0 passing through the three given points is given
by ��������

1 1 1 1
x �1 �2 �3
y �1 �2 �3
x2 + y2 �21 + �

2
1 �22 + �

2
2 �23 + �

2
3

��������������
1 1 1
�1 �2 �3
�1 �2 �3

������
= 0:

5. Determinants of Linear Operators

To de�ne the determinant of a linear operator L : V ! V we simply note that
vol (L (x1) ; :::; L (xn)) de�nes an alternating n-form that is linear in each variable.
Thus

vol (L (x1) ; :::; L (xn)) = det (L) vol (x1; :::; xn)
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for some scalar det (L) 2 F: This is the determinant of L: We note that a di¤erent
volume form vol1 (x1; :::; xn) gives the same de�nition of the determinant. To see
this we �rst use that vol1 = � vol and then observe that

vol1 (L (x1) ; :::; L (xn)) = � vol (L (x1) ; :::; L (xn))

= det (L)� vol (x1; :::; xn)

= det (L) vol1 (x1; :::; xn) :

If e1; :::; en is chosen so that vol (e1; :::; en) = 1, then we get the simpler formula

vol (L (e1) ; :::; L (en)) = det (L) :

This leads us to one of the standard formulas for the determinant of a matrix. From
the properties of volume forms we see that

det (L) = vol (L (e1) ; :::; L (en))

=
X

�i11 � � ��inn vol (ei1 ; :::; ein)

=
X
��i11 � � ��inn

=
X

sign (i1; :::; in)�i11 � � ��inn;

where [�ij ] = [L] is the matrix representation for L with respect to e1; :::; en: This
formula is often used as the de�nition of determinants. Note that it also shows that
det (L) = det ([L]) since�

L (e1) � � � L (en)
�
=

�
e1 � � � en

�
[L]

=
�
e1 � � � en

� 264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375
The next proposition contains the fundamental properties for determinants.

Proposition 31. (Determinant Characterization of Invertibility)
(1) If L;K : V ! V are linear operators, then

det (L �K) = det (L) det (K)
(2) det (�1V ) = �n:
(3) If L is invertible then

detL�1 =
1

detL
:

(4) If det (L) 6= 0; then L is invertible.

Proof. For any x1; :::; xn we have

det (L �K) vol (x1; :::; xn) = vol (L �K (x1) ; :::; L �K (xn))
= det (L) vol (K (x1) ; :::; L (xn))

= det (L) det (K) vol (x1; :::; xn) :

The second property follows from

vol (�x1; :::; �xn) = �n vol (x1; :::; xn) :

For the third we simply use that 1V = L � L�1 so
1 = det (L) det

�
L�1

�
:
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For the last property select a basis x1; :::; xn for V: Then

vol (L (x1) ; :::; L (xn)) = det (L) vol (x1; :::; xn)

6= 0:

Thus L (x1) ; :::; L (xn) is also a basis for V: This implies that L is invertible. �
One can in fact show that any map � : hom (V; V )! F such that

�(K � L) = � (K)� (L)

� (1V ) = 1

depends only on the determinant of the operator (see also exercises).
We have some further useful and interesting results for determinants of matri-

ces.

Proposition 32. If A 2 Matn�n (F) can be written in block form

A =

�
A11 A12
0 A22

�
;

where A11 2 Matn1�n1 (F) ; A12 2 Matn1�n2 (F), and A22 2 Matn2�n2 (F) ; n1 +
n2 = n; then

detA = detA11 detA22:

Proof. Write the canonical basis for Fn as e1; :::; en1 ; f1; :::; fn2 according to
the block decomposition. Next observe that A can be written as a composition in
the following way

A =

�
A11 A12
0 A22

�
=

�
1 A12
0 A22

� �
A11 0
0 1

�
= BC

Thus it su¢ ces to show that

det

�
1 A12
0 A22

�
= detB

= det (A22)

and

det

�
A11 0
0 1

�
= detC

= det (A11) :

To prove the last formula note that for �xed f1; :::; fn2 and

x1; :::; xn1 2 span fe1; :::; en1g
the volume form

vol (x1; :::; xn1 ; f1; :::; fn2)

de�nes the usual volume form on span fe1; :::; en1g = Fn1 : Thus
detC = vol (C (e1) ; :::; C (en1) ; C (f1) ; :::; C (fn2))

= vol (A11 (e1) ; :::; A11 (en1) ; f1; :::; fn2)

= detA11:
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For the �rst equation we observe

detB = vol (B (e1) ; :::; B (en1) ; B (f1) ; :::; B (fn2))

= vol (e1; :::; en1 ; A12 (f1) +A22 (f1) ; :::; A12 (fn2) +A22 (fn2))

= vol (e1; :::; en1 ; A22 (f1) ; :::; A22 (fn2))

since A12 (fj) 2 span fe1; :::; en1g : Then we get detB = detA22 as before. �
Proposition 33. If A 2 Matn�n (F) ; then detA = detAt:

Proof. First note that the result is obvious if A is upper triangular. Using
row operations we can always �nd an invertible P such that PA is upper triangular.
Here P is a product of the elementary matrices of the types Iij and Rij (�). The row
interchange matrices Iij are symmetric, i.e., Itij = Iij and have det Iij = �1: While
Rji (�) is upper or lower triangular with 1s on the diagonal. Hence (Rij (�))

t
=

Rji (�) and detRij (�) = 1: In particular, it follows that detP = detP t = �1:
Thus

detA =
det (PA)

detP

=
det
�
(PA)

t
�

det (P )
t

=
det (AtP t)

det (P )
t

= det
�
At
�

�
This last proposition tells us that the determinant map A ! jAj de�ned on

Matn�n (F) is linear and alternating in both columns and rows. This can be ex-
tremely useful when calculating determinants. It also tells us that one can do
Laplace expansions along columns as well as rows.

5.1. Exercises.
(1) Find the determinant of

L : Matn�n (F)! Matn�n (F)
L (X) = Xt:

(2) Find the determinant of L : Pn ! Pn where
(a) L (p (t)) = p (�t)
(b) L (p (t)) = p (t) + p (�t)
(c) L (p) = Dp = p0:

(3) Find the determinant of L = p (D) ; for p 2 C [t] when restricted to the
spaces
(a) V = Pn:
(b) V = span fexp (�1t) ; :::; exp (�nt)g :

(4) Let L : V ! V be an operator on a �nite dimensional inner product space.
Show that

det (L) = det (L�) :

(5) Let V be an n-dimensional inner product space and vol a volume form so
that vol (e1; :::; en) = 1 for some orthonormal basis e1; :::; en:
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(a) If L : V ! V is an isometry, then jdetLj = 1:
(b) Show that the set of isometries L with detL = 1 forms a group.

(6) Show that O 2 On has type I if and only if det (O) = 1: Conclude that
SOn is a group.

(7) Given A 2 Matn�n (F) consider the two linear operators LA (X) = AX
and RA (X) = XA on Matn�n (F) : Compute the determinant for these
operators in terms of the determinant for A:

(8) If L : V ! V is a linear operator and vol a volume form on V; then

tr (A) vol (x1; :::; xn) = vol (L (x1) ; :::; xn)

+vol (x1; L (x2) ; :::; xn)

...

+vol (x1; :::; L (xn)) :

(9) Show that

p (t) = det

26664
1 � � � 1 1
�1 � � � �n t
...

...
...

�n1 � � � �nn tn

37775
de�nes a polynomial of degree n whose roots are �1; :::; �n: Compute k
where

p (t) = k (t� �1) � � � (t� �n)
by doing a Laplace expansion along the last column.

(10) Assume that the n� n matrix A has a block decomposition

A =

�
A11 A12
A21 A22

�
;

where A11 is an invertible matrix. Show that

det (A) = det (A11) det
�
A22 �A21A�111 A12

�
:

Hint: Select a suitable product decomposition of the form�
A11 A12
A21 A22

�
=

�
B11 0
B21 B22

� �
C11 C12
0 C22

�
:

(11) (Jacobi�s Theorem) Let A be an invertible n� n matrix. Assume that A
and A�1 have block decompositions

A =

�
A11 A12
A21 A22

�
;

A�1 =

�
A011 A012
A021 A022

�
:

Show
det (A) det (A022) = det (A11) :

Hint: Compute the matrix product�
A11 A12
A21 A22

� �
1 A012
0 A022

�
:
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(12) Let A = Matn�n (F) :We say that A has an LU decomposition if A = LU;
where L is lower triangular with 1s on the diagonal and U is upper trian-
gular. Show that A has an LU decomposition if all the leading principal
minors have nonzero determinant. The leading principal k � k minor is
the k� k submatrix gotten from A by eliminating the last n� k rows and
columns.

(13) (Sylvester�s Criterion) Let A be a real and symmetric n�n matrix. Show
that A has positive eigenvalues if and only if all leading principal minors
have positive determinant. Hint: As with the A = LU decomposition
in the previous exercise show by induction on n that A = U�U; where
U is upper triangular. Such a decomposition is also called a Choleski
factorization.

(14) (Characterization of Determinant Functions) Let � : Matn�n (F)! F be
a function such that

�(AB) = � (A)� (B) ;

�(1Fn) = 1:

(a) Show that there is a function f : F! F satisfying

f (��) = f (�) f (�)

such that �(A) = f (det (A)) : Hint: Use the relationships between
the elementary matrices established in the exercises to �Row Reduc-
tion�to show that

�(Iij) = �1;
�(Mi (�)) = � (M1 (�)) ;

�(Rkl (�)) = � (Rkl (1)) = � (R12 (1)) ;

and de�ne f (�) = � (M1 (�)) :
(b) If F = R and n is even show that �(A) = jdet (A)j de�nes a function

such that

�(AB) = � (A)� (B) ;

�(�1Rn) = �n:

(c) If F = C and in addition �(�1Cn) = �n; then show that �(A) =
det (A) :

(d) If F = R and in addition �(�1Rn) = �n; where n is odd, then show
that �(A) = det (A) :

6. Linear Equations

Cramer�s rule is a formula for the solution to n linear equations in n variables
when we know that only one solution exists. We will generalize this construction a
bit so as to see that it can be interpreted as an inverse to the isomorphism�

x1 � � � xn
�
: Fn ! V

when x1; :::; xn is a basis.
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Theorem 44. Let V be an n dimensional vector space and vol a volume form.
If x1; :::; xn is a basis for V and x = x1�1 + � � �xn�n is the expansion of x 2 V
with respect to that basis, then

�1 =
vol (x; x2; :::; xn)

vol (x1; :::; xn)
;

...

�i =
vol (x1; :::; xi�1; x; xi+1; :::; xn)

vol (x1; :::; xn)
;

...

�n =
vol (x1; :::; xn�1; x)

vol (x1; :::; xn)
:

Proof. First note that each �i depends linearly on x: Thus we have de�ned
a linear map V ! Fn: This means that we only need to check what happens when
x is one of the vectors in the basis. If x = xi; then

�1 =
vol (xi; x2; :::; xn)

vol (x1; :::; xn)
= 0;

...

�i =
vol (x1; :::; xi�1; xi; xi+1; :::; xn)

vol (x1; :::; xn)
= 1;

...

�n =
vol (x1; :::; xn�1; xi)

vol (x1; :::; xn)
= 0:

Showing that xi is mapped to ei. This means that it is the inverse to�
x1 � � � xn

�
: Fn ! V:

�

Cramer�s rule isn�t necessarily very practical when solving equations, but it
is often a useful abstract tool. It also comes in handy, as we shall see below in
�Di¤erential Equations�when solving inhomogeneous linear di¤erential equations.

Cramer�s rule can also be used to solve linear equations L (x) = b; as long as
L : V ! V is an isomorphism. In particular, it can be used to compute the inverse
of L as is done in one of the exercises. To see how we can solve L (x) = b; we �rst
select a basis x1; :::; xn for V and then consider the problem of solving

�
L (x1) � � � L (xn)

� 264 �1
...
�n

375 = b:
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Since L (x1) ; :::; L (xn) is also a basis we know that this forces

�1 =
vol (b; L (x2) ; :::; L (xn))

vol (L (x1) ; :::; L (xn))
;

...

�i =
vol (L (x1) ; :::; L (xi�1) ; b; L (xi+1) ; :::; L (xn))

vol (L (x1) ; :::; L (xn))
;

...

�n =
vol (L (x1) ; :::; L (xn�1) ; b)

vol (L (x1) ; :::; L (xn))

with x = x1�1 + � � �xn�n being the solution. If we use b = x1; :::; xn, then we get
the matrix representation for L�1 by �nding the coordinates to the solutions of
L (x) = xi:

As an example let us see how we can solve

266664
0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
1 0 � � � 0

377775
26664
�1
�2
...
�n

37775 =
26664
�1
�2
...
�n

37775 :

First we see directly that

�2 = �1;

�3 = �2;

...

�1 = �n:

From Cramer�s rule we get that

�1 =

����������
�1 1 � � � 0

�2 0
. . .

...
...

...
. . . 1

�n 0 � � � 0

��������������������
0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
1 0 � � � 0

����������
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A Laplace expansion along the �rst column tells us that����������
�1 1 � � � 0

�2 0
. . .

...
...

...
. . . 1

�n 0 � � � 0

����������
= �1

����������
0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
0 0 � � � 0

����������
� �2

����������
1 0 � � � 0

0 0
. . .

...
...
...

. . . 1
0 0 � � � 0

����������
� � �+ (�1)n+1 �n

����������
1 0 � � � 0

0 1
. . .

...
...
...

. . . 0
0 0 � � � 1

����������
here all of the determinants are upper triangular and all but the last has zeros on
the diagonal. Thus ����������

�1 1 � � � 0

�2 0
. . .

...
...

...
. . . 1

�n 0 � � � 0

����������
= (�1)n+1 �n

Similarly ����������
0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
1 0 � � � 0

����������
= (�1)n+1

so
�1 = �n:

Similar calculations will con�rm our answers for �2; :::; �n: By using b = e1; :::; en
we can also �nd the inverse266664

0 1 � � � 0

0 0
. . .

...
...
...

. . . 1
1 0 � � � 0

377775
�1

=

266664
0 0 � � � 1

1 0
. . .

...
...

. . .
. . . 0

0 � � � 1 0

377775 :
6.1. Exercises.
(1) Let

An =

26666664

2 �1 0 � � � 0
�1 2 �1 � � � 0

0 �1 2
. . .

...
...

...
. . .

. . . �1
0 0 � � � �1 2

37777775 :
(a) Compute detAn for n = 1; 2; 3; 4:
(b) Compute A�1n for n = 1; 2; 3; 4:
(c) Find detAn and A�1n for general n:
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(2) Given a nontrivial volume form vol on an n-dimensional vector space V , a
linear operator L : V ! V and a basis x1; :::; xn for V de�ne the classical
adjoint adj (L) : V ! V by

adj (L) (x) = vol (x; L (x2) ; :::; L (xn))x1

+vol (L (x1) ; x; L (x3) ; :::; L (xn))x2
...

+vol (L (x1) ; :::; L (xn�1) ; x)xn:

(a) Show that L � adj (L) = adj (L) � L = det (L) 1V :
(b) Show that if L is an n � n matrix, then adj (L) = (cofA)

t
; where

cofA is the cofactor matrix whose ij entry is (�1)i+j detAij ; where
Aij is the (n� 1)� (n� 1) matrix obtained from A by deleting the
ith row and jth column.

(c) Show that adj (L) does not depend on the choice of basis x1; :::; xn
or volume form vol :

(3) (Lagrange Interpolation) Use Cramer�s rule and

p (t) = det

26664
1 � � � 1 1
�1 � � � �n t
...

...
...

�n1 � � � �nn tn

37775
to �nd p 2 Pn such that p (t0) = b0; ::::; p (tn) = bn where t0; :::; tn 2 C
are distinct.

(4) Let A 2 Matn�n (F) ; where F is R or C: Show that there is a constant Cn
depending only on n such that if A is invertible, then

A�1

 � Cn kAkn�1jdet (A)j :

(5) Let A be an n � n matrix whose entries are integers. If A is invertible
show that A�1 has integer entries if and only if det (A) = �1:

(6) Decide when the system�
a �b
b a

� �
�1
�2

�
=

�
�1
�2

�
can be solved for all �1; �2. Write down a formula for the solution.

(7) For which � is the matrix invertible24 � � 1
� 1 1
1 1 1

35?
(8) In this exercise we will see how Cramer used his rule to study Leibniz�s

problem of when Ax = b can be solved assuming that A 2 Mat(n+1)�n (F)
and b 2 Fn+1: Assume in addition that rank (A) = n: Then delete one
row from [Ajb] so that the resulting system [A0jb0] has a unique solution.
Use Cramer�s rule to solve A0x = b0 and then insert this solution in the
equation that was deleted. Show that this equation is satis�ed if and
only if det [Ajb] = 0: Hint: The last equation is equivalent to a Laplace
expansion of det [Ajb] = 0 along the deleted row.
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(9) For a; b; c 2 C consider the real equation a� + b� = c; where �; � 2 R:
(a) Write this as a system of the real equations.
(b) Show that this system has a unique solution when Im (�ab) 6= 0:
(c) Use Cramer�s rule to �nd a formula for � and � that depends Im (�ab) ;

Im (�ac) ; Im
�
�bc
�
:

7. The Characteristic Polynomial

Now that we know that the determinant of a linear operator characterizes
whether or not it is invertible it would seem perfectly natural to de�ne the charac-
teristic polynomial of L : V ! V by

�L (t) = det (t1V � L) :

Clearly a zero for the function �L (t) corresponds a value of t where t1V �L is not
invertible and therefore ker (t1V � L) 6= f0g ; but this means that such a t is an
eigenvalue. We now need to justify why this de�nition yields the same function we
constructed using Gauss elimination.

Theorem 45. Let A 2 Matn�n (F), then �A (t) = det (t1Fn �A) is a monic
polynomial of degree n whose roots in F are the eigenvalues for A : Fn ! Fn:
Moreover, this de�nition for the characteristic polynomial agrees with the one given
using Gauss elimination.

Proof. First we show that if L : V ! V is a linear operator on an n-
dimensional vector space, then �L (t) = det (t1V � L) de�nes a monic polynomial
of degree n: To see this consider

= vol ((t1V � L) e1; :::; (t1V � L) en)

and use linearity of vol to separate each of the terms (t1V � L) ek = tek � L (ek) :
When doing this we get to factor out t several times so it is easy to see that we get
a polynomial in t: To check the degree we group terms involving powers of t that
are lower than n in the expression O

�
tn�1

�
det (t1V �A) = vol ((t1V � L) e1; :::; (t1V � L) en)

= t vol (e1; (t1V � L) e2; :::; (t1V � L) en)
� vol (L (e1) ; (t1V � L) e2; :::; (t1V � L) en)

= t vol (e1; (t1V � L) e2; :::; (t1V � L) en) +O
�
tn�1

�
= t2 vol (e1; e2; :::; (t1V � L) en) +O

�
tn�1

�
...

= tn vol (e1; e2; :::; en) +O
�
tn�1

�
= tn +O

�
tn�1

�
:

In chapter 2 we proved that (t1Fn �A) = PU; where

U =

26664
r1 (t) � � � � �
0 r2 (t) � � � �
...

...
. . .

...
0 0 � � � rn (t)

37775



278 5. DETERMINANTS

and P is the product of the elementary matrices: 1. Ikl interchanging rows, 2.
Rkl (r (t)) which multiplies row l by a function r (t) and adds it to row k; and 3.
Mk (�) which simply multiplies row k by � 2 F�f0g : For each �xed t we have

det (Ikl) = �1;
det (Rkl (r (t))) = 1;

det (Mk (�)) = �:

This means that

det (t1Fn �A) = det (PT )

= det (P ) det (T )

= det (P ) r1 (t) � � � rn (t)

where det (P ) is a nonzero scalar that does not depend on t and r1 (t) � � � rn (t) is
the function that we used to de�ne the characteristic polynomial in chapter 2. This
shows that the two de�nitions have to agree. �

With this new de�nition of the characteristic polynomial we can establish some
further interesting properties.

Proposition 34. Assume that L : V ! V has

�L (t) = tn + an�1t
n�1 + � � �+ a1t+ a0:

Then

an�1 = � trL;
a0 = (�1)n detL:

Proof. To show the last property just note that

a0 = �L (0)

= det (�L)
= (�1)n det (L) :

The �rst property takes a little more thinking. We use the calculation that lead to
the formula

det (t1V �A) = vol ((t1V � L)x1; :::; (t1V � L)xn)
= tn +O

�
tn�1

�
from the previous proof. Evidently we have to calculate the coe¢ cient in front of
tn�1: That term must look like

tn�1 (vol (�L (e1) ; e2; :::; en) + � � �+ vol (e1; e2; :::;�L (en))) :

Thus we have to show

tr (L) = vol (L (e1) ; e2; :::; en) + � � �+ vol (e1; e2; :::; L (en)) :

To see this expand

L (ei) =
nX
j=1

ej�ji
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so that [�ji] = [L] and tr (L) = �11 + � � � + �nn: Next note that if we insert that
expansion in, say, vol (L (e1) ; e2; :::; en) ; then we have

vol (L (e1) ; e2:::; en) = vol

0@ nX
j=1

ej�j1; e2; :::; en

1A
= vol (e1�11; e2; :::; en)

= �11 vol (e1; e2; :::; en)

= �11:

This implies that

tr (L) = �11 + � � �+ �nn
= vol (L (e1) ; e2; :::; en) +

� � �+ vol (e1; e2; :::; L (en)) :
�

Proposition 35. Assume that L : V ! V and that M � V is an L invariant
subspace, then �LjM (t) divides �L (t) :

Proof. Select a basis x1; :::; xn for V such that x1; ::; xk form a basis for M:
Then the matrix representation for L in this basis looks like

[L] =

�
A11 A12
0 A22

�
;

where A11 2 Matk�k (F) ; A12 2 Matk�(n�k) (F), and A22 2 Mat(n�k)�(n�k) (F) :
This means that

t1Fn � [L] =
�
t1Fk �A11 A12

0 t1Fn�k �A22

�
:

Thus we have

�L (t) = �[L] (t)

= det (t1Fn � [L])
= det (t1Fk �A11) det (t1Fn�k �A22) :

Now A11 is the matrix representation for LjM so we have proven

�L (t) = �LjM (t) p (t)

where p (t) is some polynomial. �

7.1. Exercises.
(1) Let K;L : V ! V be linear operators.

(a) Show that det (K � tL) is a polynomial in t:
(b) If K or L is invertible show that det (tI � L �K) = det (tI �K � L) :
(c) Show part b. in general.

(2) Let V be a �nite dimensional real vector space and L : V ! V a linear
operator.
(a) Show that the number of complex roots of the characteristic polyno-

mial is even. Hint: They come in conjugate pairs.
(b) If dimR V is odd then L has an eigenvalue whose sign is the same as

that of detL:
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(c) If dimR V is even and detL < 0 then L has two real eigenvalues, one
negative and one positive.

(3) If

A =

�
� 

� �

�
;

then

�A (t) = t2 � (trA) t+ detA
= t2 � (�+ �) t+ (�� � �
) :

(4) If A 2 Mat3�3 (F) and A = [�ij ] ; then
�A (t) = t3 � (trA) t2 + (jA11j+ jA22j+ jA33j) t� detA;

where Aii are the companion matrix we get from eliminating the ith row
and column in A:

(5) If L is invertible then

�L�1 (t) =
(�t)n

detL
�L
�
t�1
�
:

(6) Let L : V ! V be a linear operator on a �nite dimensional inner product
space with

�L (t) = tn + an�1t
n�1 + � � �+ a1t+ a0:

Show that

�L� (t) = tn + �an�1t
n�1 + � � �+ �a1t+ �a0:

(7) Let
�L (t) = tn + an�1t

n�1 + � � �+ a1t+ a0
be the characteristic polynomial for L : V ! V: If vol is a volume form
on V show that

(�1)k an�k vol (x1; :::; xn)
=

X
i1<i2<���<ik

vol (::; xi1�1; L (xi1) ; xi1+1; :::; xik�1; L (xik) ; xik+1; ::) ;

i.e., we are summing over all possible choices of i1 < i2 < � � � < ik and in
each summand replacing xij by L

�
xij
�
:

(8) Suppose we have a sequence V1
L1! V2

L2! V3 of linear maps, where L1
is one-to-one, L2 is onto, and im (L1) = ker (L2) : Show that dimV2 =
dimV1 dimV3: Assume furthermore that we have linear operators Ki :
Vi ! Vi such that the diagram commutes

V1
L1�! V2

L2�! V3
K1 " K2 " K3 "
V1

L1�! V2
L2�! V3

Show that
�K2

(t) = �K1
(t)�K3

(t) :

(9) Using the de�nition

detA =
X

sign (i1; :::; in)�i11 � � ��inn
reprove the results from this section for matrices.



8. DIFFERENTIAL EQUATIONS� 281

(10) (The Newton Identities) In this exercise we wish to generalize the formulae
an�1 = � trL; a0 = (�1)n detL; for the characteristic polynomial

tn + an�1t
n�1 + � � �+ a1t+ a0 = (t� �1) � � � (t� �n)

of L:
(a) Prove that

ak = (�1)n�k
X

i1<���<in�k

�i1 � � ��in�k :

(b) Prove that

(trL)
k
= (�1 + � � �+ �n)k ;

tr
�
Lk
�
= �k1 + � � �+ �kn:

(c) Prove

(trL)
2
= tr

�
L2
�
+ 2

X
i<j

�i�j

= tr
�
L2
�
+ 2an�2:

(d) Prove more generally that

(trL)
k
= k! (�1)k an�k

+

�
k

2

�
(trL)

k�2
trL2

+

��
k

3

�
�
�
k

2

��
(trL)

k�3
trL3

+

��
k

4

�
�
�
k

3

�
+

�
k

2

��
(trL)

n�4
trL4

...

+

��
k

k

�
�
�

k

k � 1

�
+ � � �+ (�1)k

�
k

2

��
trLk:

(e) If trL = 0; then��
n

n

�
�
�

n

n� 1

�
+ � � �+ (�1)n

�
n

2

��
trLn = n! detL:

(f) If trL = trL2 = � � � = trLn = 0; then �L (t) = tn:

8. Di¤erential Equations�

We are now going to apply the theory of determinants to the study of linear
di¤erential equations. We start with the system L (x) = _x�Ax = b; where

x (t) 2 Cn;
b 2 Cn

A 2 Matn�n (C)

and x (t) is the vector valued function we need to �nd. We know that the homo-
geneous problem L (x) = 0 has n linearly independent solutions x1; :::; xn: More
generally we can show something quite interesting about collections of solutions.
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Lemma 24. Let x1; :::; xn be solutions to the homogeneous problem L (x) = 0;
then

d

dt
(vol (x1; :::; xn)) = tr (A) vol (x1; :::; xn) :

In particular

vol (x1; :::; xn) (t) = vol (x1; :::; xn) (t0) exp (tr (A) (t� t0)) :

Moreover, x1; :::; xn are linearly independent solutions if and only if x1 (t0) ; :::;
xn (t0) 2 Cn are linearly independent. Each of these two conditions in turn imply
that x1 (t) ; :::; xn (t) 2 Cn are linearly independent for all t:

Proof. To compute the derivative we �nd the Taylor expansion for

vol (x1; :::; xn) (t+ h)

in terms of h and then identify the term that is linear in h. This is done along the
lines of our proof that an�1 = � trA; where an�1 is the coe¢ cient in front of tn�1
in the characteristic polynomial.

vol (x1; :::; xn) (t+ h)

= vol (x1 (t+ h) ; :::; xn (t+ h))

= vol (x1 (t) +Ax1 (t)h+ o (h) ; :::; xn (t) +Axn (t)h+ o (h))

= vol (x1 (t) ; :::; xn (t))

+h vol (Ax1 (t) ; :::; xn (t))

...

+h vol (x1 (t) ; :::; Axn (t))

+o (h)

= vol (x1 (t) ; :::; xn (t)) + h tr (A) vol (x1 (t) ; :::; xn (t)) + o (h) :

Thus
v (t) = vol (x1; :::; xn) (t)

solves the di¤erential equation
_v = tr (A) v:

implying that
v (t) = v (t0) exp (tr (A) (t� t0)) :

In particular, we see that v (t) 6= 0 provided only v (t0) 6= 0:
It remains to prove that x1; :::; xn are linearly independent solutions if and only

if x1 (t0) ; :::; xn (t0) 2 Cn are linearly independent. It is obvious that x1; :::; xn are
linearly independent if x1 (t0) ; :::; xn (t0) 2 Cn are linearly independent. Con-
versely, if we assume that x1 (t0) ; :::; xn (t0) 2 Cn are linearly dependent, then we
can �nd �1; :::; �n 2 Cn not all zero so that

�1x1 (t0) + � � �+ �nxn (t0) = 0:

Uniqueness of solutions to the initial value problem L (x) = 0; x (t0) = 0; then
implies that

x (t) = �1x1 (t) + � � �+ �nxn (t) � 0
for all t: �
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We now claim that the inhomogeneous problem can be solved provided we
have found a linearly independent set of solutions x1; :::; xn to the homogeneous
equation. The formula comes from Cramer�s rule but is known as the variations of
constants method. We assume that the solution x to

L (x) = _x�Ax = b;

x (t0) = 0

looks like
x (t) = c1 (t)x1 (t) + � � �+ cn (t)xn (t) ;

where c1 (t) ; :::; cn (t) 2 C1 (R;C) are functions rather than constants. Then
_x = c1 _x1 + � � �+ cn _xn + _c1x1 + � � �+ _cnxn

= c1Ax1 + � � �+ cnAxn + _c1x1 + � � �+ _cnxn

= A (x) + _c1x1 + � � �+ _cnxn:

In other terms
L (x) = _c1x1 + � � �+ _cnxn:

This means that for each t the values _c1 (t) ; :::; _cn (t) should solve the linear equation

_c1x1 + � � �+ _cnxn = b:

Cramer�s rule for solutions to linear systems then tells us that

_c1 (t) =
vol (b; :::; xn) (t)

vol (x1; :::; xn) (t)
;

...

_cn (t) =
vol (x1; :::; b) (t)

vol (x1; :::; xn) (t)
;

implying that

c1 (t) =

Z t

t0

vol (b; :::; xn) (s)

vol (x1; :::; xn) (s)
ds;

...

cn (t) =

Z t

t0

vol (x1; :::; b) (s)

vol (x1; :::; xn) (s)
ds:

In practice there are more e¢ cient methods that can be used when we know
something about b: These methods also use linear algebra in order to solve certain
linear systems of equations.

Having dealt with systems we next turn to higher order equations: L (x) =
p (D) (x) = f; where

p (D) = Dn + an�1D
n�1 + � � �+ a1D + a0

is a polynomial with complex or real coe¢ cients and f (t) 2 C1 (R;C) : This can
be translated into a system _z �Az = b; or

_z �

26664
0 1 � � � 0
...

. . .
...

...
0 � � � 0 1
�a0 � � � �an�2 �an�1

37775 z =
26664
0
...
0
f

37775 ;
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by using

z =

26664
x
Dx
...

Dn�1x

37775 :
If we have n functions x1; :::; xn 2 C1 (R;C) ; then the Wronskian

W(x1; :::; xn) (t) = vol (z1; :::; zn) (t)

= det

26664
x1 (t) � � � xn (t)
(Dx1) (t) � � � (Dxn) (t)
...

...�
Dk�1x1

�
(t) � � �

�
Dk�1xn

�
(t)

37775 :
In the case where x1; :::; xn solve L (x) = p (D) (x) = 0 this tells us that

W(x1; :::; xn) (t) = W (x1; :::; xn) (t0) exp (�an�1 (t� t0)) :
Finally we can again try the variation of constants method to solve the inho-

mogeneous equation. It is slightly tricky to do this directly by assuming that

x (t) = c1 (t)x1 (t) + � � �+ cn (t)xn (t) :
Instead we use the system _z �Az = b; and guess that

z = c1 (t) z1 (t) + � � �+ cn (t) zn (t) :
This certainly implies that

x (t) = c1 (t)x1 (t) + � � �+ cn (t)xn (t) ;
but the converse is not true. As above we get

c1 (t) =

Z t

t0

vol (b; :::; zn) (s)

vol (z1; :::; zn) (s)
ds;

...

cn (t) =

Z t

t0

vol (z1; :::; b) (s)

vol (z1; :::; zn) (s)
ds:

Here
vol (z1; :::; zn) = W (x1; :::; xn) :

The numerator can also be simpli�ed by using a Laplace expansion along the column
vector b: This gives us

vol (b; z2; :::; zn) =

���������
0 x1 � � � xn
...

... � � �
...

0 Dn�2x2 � � � Dn�2xn
b Dn�1x2 � � � Dn�1xn

���������
= (�1)n+1 b

�������
x1 � � � xn
... � � �

...
Dn�2x2 � � � Dn�2xn

�������
= (�1)n+1 bW(x2; :::; xn) :



8. DIFFERENTIAL EQUATIONS� 285

Thus

c1 (t) = (�1)n+1
Z t

t0

b (s)W (x2; :::; xn) (s)

W (x1; :::; xn) (s)
ds;

...

cn (t) = (�1)n+n
Z t

t0

b (s)W (x1; :::; xn�1) (s)

W (x1; :::; xn) (s)
ds

and therefore a solution to the inhomogeneous equation is given by

x (t) =

�
(�1)n+1

Z t

t0

b (s)W (x2; :::; xn) (s)

W (x1; :::; xn) (s)
ds

�
x1 (t) + � � �

+

�
(�1)n+n

Z t

t0

b (s)W (x1; :::; xn�1) (s)

W (x1; :::; xn) (s)
ds

�
xn (t)

=

nX
k=1

(�1)n+k xk (t)
Z t

t0

b (s)W (x1; :::; x̂k; :::; xn) (s)

W (x1; :::; xn) (s)
ds

Let us try to solve a concrete problem using these methods.

Example 101. Find the complete set of solutions to �x�2 _x+x = exp (t) :We see
that �x� 2 _x+ x = (D � 1)2 x; thus the characteristic equation is (�� 1)2 = 1: This
means that we only get one solution x1 = exp (t) from the eigenvalue � = 1: The
other solution is then given by x2 (t) = t exp (t). We now compute the Wronskian
to check that they are linearly independent.

W(x1; x2) =

���� exp (t) t exp (t)
exp (t) (1 + t) exp (t)

����
= exp (2t)

���� 1 t
1 (1 + t)

����
= ((1 + t)� t) exp (2t)
= exp (2t) :

Note we could also have found x2 from our knowledge that

W(x1; x2) (t) = W (x1; x2) (t0) exp (2 (t� t0)) :

Assuming that t0 = 0 and we want W(x1; x2) (t0) = 1; we simply need to solve

W(x1; x2) (t) = x1 _x2 � _x1x2 = exp (2t) :

Since x1 = exp (t) ; this implies that

_x2 � x2 = exp (t) :

Hence

x2 (t) = exp (t)

Z t

0

exp (�s) exp (t) ds

= t exp (t)

as expected.
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The variation of constants formula now tells us to compute

c1 (t) = (�1)2+1
Z t

0

f (s)x2 (s)

W (x1; x2) (s)
ds

= �
Z t

0

exp (s) (s exp (s))

exp (2s)
ds

= �
Z t

0

sds

= �1
2
t2

and

c2 (t) = (�1)2+2
Z t

0

f (s)x1 (s)

W (x1; x2) (s)
ds

=

Z t

0

1ds

= t

Thus

x = �1
2
t2x1 (t) + tx2 (t)

= �1
2
t2 exp (t) + t (t exp (t))

=
1

2
t2 exp (t)

solves the inhomogeneous problem and x = �1 exp (t) + �2t exp (t) +
1
2 t
2 exp (t)

represents the complete set of solutions.

8.1. Exercises.
(1) Let p0 (t) ; :::; pn (t) 2 C [t] and assume that t 2 R: If

pi (t) = anit
n + � � �+ a1it+ a0i;

show that

W(p0; :::; pn) = det

26664
p0 (t) � � � pn (t)
(Dp0) (t) � � � (Dpn) (t)
...

...
(Dnp0) (t) � � � (Dnpn) (t)

37775

= det

2666664
a00 � � � a0n
a10 � � � a1n
2a20 � � � 2a2n
...

...
n!an0 � � � n!ann

3777775

= n! � (n� 1)! � � � � � 2 � 1 det

2666664
a00 � � � a0n
a10 � � � a1n
a20 � � � a2n
...

...
an0 � � � ann

3777775
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(2) Let x1; :::; xn be linearly independent solutions to

p (D) (x) =
�
Dn + an�1D

n�1 + � � �+ a0
�
(x) = 0:

Do the following questions without using what we know about existence
and uniqueness of solutions to di¤erential equations.
(a) Show that

p (D) (x) =
W (x1:::; xn; x)

W (x1:::; xn)
:

(b) Conclude that p (D) (x) = 0 if and only if W(x; x1:::; xn) = 0:
(c) If W(x; x1:::; xn) = 0; then x is a linear combination of x1; :::; xn:
(d) If x; y are solutions with the same initial values: x (0) = y (0) ;

Dx (0) = Dy (0) ; :::; Dn�1x (0) = Dn�1y (0) ; then x = y:
(3) Assume two monic polynomials p; q 2 C [t] have the property that p (D) (x) =

0 and q (D) (x) = 0 have the same solutions. Is it true that p = q? Hint if
p (D) (x) = 0 = q (D) (x) ; then gcd (p; q) (D) (x) = 0:

(4) Assume that x is a solution to p (D) (x) = 0; where p (D) = Dn + � � � +
a1D + a0:
(a) Show that the phase shifts x! (t) = x (t+ !) are also solutions.
(b) If the vectors26664

x (!1)
Dx (!1)

...
Dn�1x (!1)

37775 ; :::;
26664

x (!n)
Dx (!n)

...
Dn�1x (!n)

37775
form a basis for Cn; then all solutions to p (D) (x) = 0 are linear
combinations of the phase shifted solutions x!1 ; :::; x!n :

(c) If the vectors26664
x (!1)
Dx (!1)

...
Dn�1x (!1)

37775 ; :::;
26664

x (!n)
Dx (!n)

...
Dn�1x (!n)

37775
never form a basis for Cn; then x is a solution to a kth order equation
for k < n: Hint: If x is not a solution to a lower order equation, the
x;Dx; :::;Dn�1x is a (cyclic) basis for the solution space.

(5) Find a formula for the real solutions to the system�
_x1
_x2

�
�
�
a �b
b a

� �
x1
x2

�
=

�
b1
b2

�
;

where a; b 2 R and b1; b2 2 C1 (R;R) :
(6) Find a formula for the real solutions to the equation

�x+ a _x+ bx = f;

where a; b 2 R and f 2 C1 (R;R) :
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